ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-17
    Description: Intracellular lipopolysaccharide from Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Burkholderia thailandensis activates mouse caspase-11, causing pyroptotic cell death, interleukin-1beta processing, and lethal septic shock. How caspase-11 executes these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1beta maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd(-/-) mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1beta secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd(-/-) mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayagaki, Nobuhiko -- Stowe, Irma B -- Lee, Bettina L -- O'Rourke, Karen -- Anderson, Keith -- Warming, Soren -- Cuellar, Trinna -- Haley, Benjamin -- Roose-Girma, Merone -- Phung, Qui T -- Liu, Peter S -- Lill, Jennie R -- Li, Hong -- Wu, Jiansheng -- Kummerfeld, Sarah -- Zhang, Juan -- Lee, Wyne P -- Snipas, Scott J -- Salvesen, Guy S -- Morris, Lucy X -- Fitzgerald, Linda -- Zhang, Yafei -- Bertram, Edward M -- Goodnow, Christopher C -- Dixit, Vishva M -- England -- Nature. 2015 Oct 29;526(7575):666-71. doi: 10.1038/nature15541. Epub 2015 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080, USA. ; Department of Molecular Biology, Genentech Inc., South San Francisco, California 94080, USA. ; Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, USA. ; Department of Bioinformatics, Genentech Inc., South San Francisco, California 94080, USA. ; Department of Immunology, Genentech Inc., South San Francisco, California 94080, USA. ; Program in Cell Death Signaling Networks, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, USA. ; The Australian Phenomics Facility, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia. ; Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia. ; Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia. ; St. Vincent's Clinical School, UNSW Australia, Darlinghurst, New South Wales 2010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26375259" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-08-26
    Description: The ataxia telangiectasia mutated (ATM) protein kinase is a critical component of a DNA-damage response network configured to maintain genomic integrity. The abundance of an essential downstream effecter of this pathway, the tumor suppressor protein p53, is tightly regulated by controlled degradation through COP1 and other E3 ubiquitin ligases, such as MDM2 and Pirh2; however, the signal transduction pathway that regulates the COP1-p53 axis following DNA damage remains enigmatic. We observed that in response to DNA damage, ATM phosphorylated COP1 on Ser(387) and stimulated a rapid autodegradation mechanism. Ionizing radiation triggered an ATM-dependent movement of COP1 from the nucleus to the cytoplasm, and ATM-dependent phosphorylation of COP1 on Ser(387) was both necessary and sufficient to disrupt the COP1-p53 complex and subsequently to abrogate the ubiquitination and degradation of p53. Furthermore, phosphorylation of COP1 on Ser(387) was required to permit p53 to become stabilized and to exert its tumor suppressor properties in response to DNA damage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dornan, David -- Shimizu, Harumi -- Mah, Angie -- Dudhela, Tanay -- Eby, Michael -- O'rourke, Karen -- Seshagiri, Somasekar -- Dixit, Vishva M -- New York, N.Y. -- Science. 2006 Aug 25;313(5790):1122-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16931761" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; *DNA Damage ; DNA-Binding Proteins/genetics/*metabolism ; Escherichia coli/genetics/metabolism ; Etoposide/pharmacology ; Humans ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; RNA, Small Interfering ; Radiation, Ionizing ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p53/genetics/metabolism ; Tumor Suppressor Proteins/genetics/*metabolism ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-04-04
    Description: TRAIL (also known as Apo-2L) is a member of the tumor necrosis factor (TNF) ligand family that rapidly induces apoptosis in a variety of transformed cell lines. The human receptor for TRAIL was found to be an undescribed member of the TNF-receptor family (designated death receptor-4, DR4) that contains a cytoplasmic "death domain" capable of engaging the cell suicide apparatus but not the nuclear factor kappa B pathway in the system studied. Unlike Fas, TNFR-1, and DR3, DR4 could not use FADD to transmit the death signal, suggesting the use of distinct proximal signaling machinery. Thus, the DR4-TRAIL axis defines another receptor-ligand pair involved in regulating cell suicide and tissue homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, G -- O'Rourke, K -- Chinnaiyan, A M -- Gentz, R -- Ebner, R -- Ni, J -- Dixit, V M -- DAMD17-96-1-6085/DA/NIDA NIH HHS/ -- ES08111/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1997 Apr 4;276(5309):111-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9082980" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; *Apoptosis ; Apoptosis Regulatory Proteins ; Carrier Proteins/metabolism ; Cell Line ; Fas-Associated Death Domain Protein ; Humans ; Ligands ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; NF-kappa B/metabolism ; Proteins/metabolism ; RNA, Messenger/genetics/metabolism ; Receptor-Interacting Protein Serine-Threonine Kinases ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; TNF Receptor-Associated Factor 1 ; TNF-Related Apoptosis-Inducing Ligand ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-12-22
    Description: MCL1 is essential for the survival of stem and progenitor cells of multiple lineages, and is unique among pro-survival BCL2 family members in that it is rapidly turned over through the action of ubiquitin ligases. B- and mantle-cell lymphomas, chronic myeloid leukaemia, and multiple myeloma, however, express abnormally high levels of MCL1, contributing to chemoresistance and disease relapse. The mechanism of MCL1 overexpression in cancer is not well understood. Here we show that the deubiquitinase USP9X stabilizes MCL1 and thereby promotes cell survival. USP9X binds MCL1 and removes the Lys 48-linked polyubiquitin chains that normally mark MCL1 for proteasomal degradation. Increased USP9X expression correlates with increased MCL1 protein in human follicular lymphomas and diffuse large B-cell lymphomas. Moreover, patients with multiple myeloma overexpressing USP9X have a poor prognosis. Knockdown of USP9X increases MCL1 polyubiquitination, which enhances MCL1 turnover and cell killing by the BH3 mimetic ABT-737. These results identify USP9X as a prognostic and therapeutic target, and they show that deubiquitinases may stabilize labile oncoproteins in human malignancies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwickart, Martin -- Huang, Xiaodong -- Lill, Jennie R -- Liu, Jinfeng -- Ferrando, Ronald -- French, Dorothy M -- Maecker, Heather -- O'Rourke, Karen -- Bazan, Fernando -- Eastham-Anderson, Jeffrey -- Yue, Peng -- Dornan, David -- Huang, David C S -- Dixit, Vishva M -- England -- Nature. 2010 Jan 7;463(7277):103-7. doi: 10.1038/nature08646. Epub 2009 Dec 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20023629" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/drug effects ; Biphenyl Compounds/pharmacology ; Cell Line ; Cell Line, Tumor ; Cell Survival ; DNA Damage ; Etoposide/pharmacology ; Female ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Half-Life ; Humans ; Lysine/metabolism ; Mice ; Mice, SCID ; Myeloid Cell Leukemia Sequence 1 Protein ; Neoplasms/diagnosis/*metabolism/*pathology ; Nitrophenols/pharmacology ; Phosphorylation/radiation effects ; Piperazines/pharmacology ; Polyubiquitin/*metabolism ; Prognosis ; Protein Binding/radiation effects ; Protein Stability ; Proto-Oncogene Proteins c-bcl-2/genetics/*metabolism ; RNA Interference ; Sulfonamides/pharmacology ; Taxoids/pharmacology ; Ubiquitin Thiolesterase/deficiency/genetics/*metabolism ; Ubiquitination ; Ultraviolet Rays ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-05-17
    Description: The proto-oncogenes ETV1, ETV4 and ETV5 encode transcription factors in the E26 transformation-specific (ETS) family, which includes the most frequently rearranged and overexpressed genes in prostate cancer. Despite being critical regulators of development, little is known about their post-translational regulation. Here we identify the ubiquitin ligase COP1 (also known as RFWD2) as a tumour suppressor that negatively regulates ETV1, ETV4 and ETV5. ETV1, which is mutated in prostate cancer more often, was degraded after being ubiquitinated by COP1. Truncated ETV1 encoded by prostate cancer translocation TMPRSS2:ETV1 lacks the critical COP1 binding motifs and was 50-fold more stable than wild-type ETV1. Almost all patient translocations render ETV1 insensitive to COP1, implying that this confers a selective advantage to prostate epithelial cells. Indeed, COP1 deficiency in mouse prostate elevated ETV1 and produced increased cell proliferation, hyperplasia, and early prostate intraepithelial neoplasia. Combined loss of COP1 and PTEN enhanced the invasiveness of mouse prostate adenocarcinomas. Finally, rare human prostate cancer samples showed hemizygous loss of the COP1 gene, loss of COP1 protein, and elevated ETV1 protein while lacking a translocation event. These findings identify COP1 as a tumour suppressor whose downregulation promotes prostatic epithelial cell proliferation and tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vitari, Alberto C -- Leong, Kevin G -- Newton, Kim -- Yee, Cindy -- O'Rourke, Karen -- Liu, Jinfeng -- Phu, Lilian -- Vij, Rajesh -- Ferrando, Ronald -- Couto, Suzana S -- Mohan, Sankar -- Pandita, Ajay -- Hongo, Jo-Anne -- Arnott, David -- Wertz, Ingrid E -- Gao, Wei-Qiang -- French, Dorothy M -- Dixit, Vishva M -- England -- Nature. 2011 May 15;474(7351):403-6. doi: 10.1038/nature10005.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21572435" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Carrier Proteins/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Proliferation ; Cell Transformation, Neoplastic ; DNA-Binding Proteins/genetics/metabolism ; Humans ; Male ; Mice ; Nuclear Proteins/deficiency/*metabolism ; PTEN Phosphohydrolase/deficiency ; Prostatic Neoplasms/metabolism/pathology ; Protein Binding ; Proto-Oncogene Proteins c-ets/*metabolism ; Transcription Factors/genetics/metabolism ; Tumor Suppressor Proteins/*metabolism ; Ubiquitin-Protein Ligases/deficiency/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-11-08
    Description: Tumor necrosis factor receptor-1 (TNFR-1) and CD95 (also called Fas or APO-1) are cytokine receptors that engage the apoptosis pathway through a region of intracellular homology, designated the "death domain." Another death domain-containing member of the TNFR family, death receptor 3 (DR3), was identified and was shown to induce both apoptosis and activation of nuclear factor kappaB. Expression of DR3 appears to be restricted to tissues enriched in lymphocytes. DR3 signal transduction is mediated by a complex of intracellular signaling molecules including TRADD, TRAF2, FADD, and FLICE. Thus, DR3 likely plays a role in regulating lymphocyte homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chinnaiyan, A M -- O'Rourke, K -- Yu, G L -- Lyons, R H -- Garg, M -- Duan, D R -- Xing, L -- Gentz, R -- Ni, J -- Dixit, V M -- GM-07863/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Nov 8;274(5289):990-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Sciences Inc., 9620 Medical Center Driv.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8875942" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Antigens, CD95/chemistry/physiology ; *Apoptosis ; Carrier Proteins/metabolism ; Caspase 8 ; Caspase 9 ; *Caspases ; Cloning, Molecular ; Cysteine Endopeptidases/metabolism ; Fas-Associated Death Domain Protein ; Gene Library ; Humans ; Lymphocytes ; Molecular Sequence Data ; NF-kappa B/*physiology ; Organ Specificity ; Proteins/metabolism ; RNA, Messenger/analysis/genetics ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*physiology ; Receptors, Tumor Necrosis Factor, Member 25 ; Sequence Alignment ; *Signal Transduction ; TNF Receptor-Associated Factor 1 ; TNF Receptor-Associated Factor 2 ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1997-02-21
    Description: Previous genetic studies of the nematode Caenorhabditis elegans identified three important components of the cell death machinery. CED-3 and CED-4 function to kill cells, whereas CED-9 protects cells from death. Here CED-9 and its mammalian homolog Bcl-xL (a member of the Bcl-2 family of cell death regulators) were both found to interact with and inhibit the function of CED-4. In addition, analysis revealed that CED-4 can simultaneously interact with CED-3 and its mammalian counterparts interleukin-1beta-converting enzyme (ICE) and FLICE. Thus, CED-4 plays a central role in the cell death pathway, biochemically linking CED-9 and the Bcl-2 family to CED-3 and the ICE family of pro-apoptotic cysteine proteases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chinnaiyan, A M -- O'Rourke, K -- Lane, B R -- Dixit, V M -- 7863/PHS HHS/ -- New York, N.Y. -- Science. 1997 Feb 21;275(5303):1122-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Michigan Medical School, Department of Pathology, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9027312" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins ; Caenorhabditis elegans/*cytology/genetics/metabolism ; *Caenorhabditis elegans Proteins ; Calcium-Binding Proteins/genetics/*metabolism ; Caspase 1 ; Caspase 8 ; Caspase 9 ; *Caspases ; Cell Line ; Cysteine Endopeptidases/genetics/*metabolism ; Genes, Helminth ; Helminth Proteins/genetics/*metabolism ; Humans ; Mutation ; Proto-Oncogene Proteins/genetics/*metabolism ; *Proto-Oncogene Proteins c-bcl-2 ; Transfection ; Tumor Cells, Cultured ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-08-31
    Description: Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space- and time-scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from three simulations of the HYbrid Coordinate Ocean Model (HYCOM) and two simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High-wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (〉0.87cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from 9 in-situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high-wavenumbers (length scales smaller than ∼50km), especially in the higher resolution simulations. In the highest resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 148 (1995), S. 211-222 
    ISSN: 1432-1424
    Keywords: Dihydropyridine receptor ; Muscle contraction ; Calcium release ; Voltage-clamp ; Calcium channels ; Muscle weakness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The biological mechanisms underlying decline in muscle power and fatigue with age are not completely understood. The contribution of alterations in the excitation-calcium release coupling in single muscle fibers was explored in this work. Single muscle fibers were voltage-clamped using the double Vaseline gap technique. The samples were obtained by needle biopsy of the vastus lateralis (quadriceps) from 9 young (25–35 years; 25.9 ± 9.1; 5 female and 4 male) and 11 old subjects (65–75 years; 70.5 ± 2.3; 6 f, 5 m). Data were obtained from 36 and 39 fibers from young and old subjects, respectively. Subjects included in this study had similar physical activity. Denervated and slow-twitch muscle fibers were excluded from this study. A significant reduction of maximum charge movement (Qmax) and DHP-sensitive Ca current were recorded in muscle fibers from the 65–75 group. Qmax values were 7.6 ± 0.9 and 3.2 ± 0.3 nC/μF for young and old muscle fibers, respectively (P 〈 0.01). No evidences of charge inactivation or interconversion (charge 1 to charge 2) were found. The peak Ca current was (−)4.7 ± 0.08 and (−)2.15 ± 0.11 μA/μF for young and old fibers, respectively (P 〈 0.01). The peak calcium transient studied with mag-fura-2 (400 μm) was 6.3 ± 0.4 μm and 4.2 ± 0.3 μm for young and old muscle fibers, respectively. Caffeine (0.5 mm) induced potentiation of the peak calcium transient in both groups. The decrease in the voltage-/ Ca-dependent Ca release ratio in old fibers (0.18 ± 0.02) compared to young fibers (0.47 ± 0.03) (P 〈 0.01), was recorded in the absence of sarcoplasmic reticulum calcium depletion. These data support a significant reduction of the amount of Ca available for triggering mechanical responses in aged skeletal muscle and, the reduction of Ca release is due to DHPR-ryanodine receptor uncoupling in fast-twitch fibers. These alterations can account, at least partially for the skeletal muscle function impairment associated with aging.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Economics Letters 30 (1989), S. 67-70 
    ISSN: 0165-1765
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Economics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...