ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-11
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉A new amphibious seismic dataset from the Cascadia subduction zone is used to characterize lithosphere structure from the Juan de Fuca ridge to the Cascades backarc. These seismic data are allowing the imaging of an entire tectonic plate from its creation at the ridge through the onset of subduction to beyond the volcanic arc, along the entire strike of the Cascadia subduction zone. We develop a tilt and compliance correction procedure for ocean-bottom seismometers that employs automated quality control to calculate robust station noise properties. To elucidate crust and upper-mantle structure, we present shoreline-crossing Rayleigh-wave phase-velocity maps for the Cascadia subduction zone, calculated from earthquake data from 20–160 s period and from ambient noise correlations from 9–20 s period. We interpret the phase-velocity maps in terms of the tectonics associated with the Juan de Fuca plate history and the Cascadia subduction system. We find that thermal oceanic plate cooling models cannot explain velocity anomalies observed beneath the Juan de Fuca plate. Instead, they may be explained by a ≤ 1 per cent partial melt region beneath the ridge and are spatially collocated with patches of hydration and increased faulting in the crust and upper mantle near the deformation front. In the forearc, slow velocities appear to be more prevalent in areas that experienced high slip in past Cascadia megathrust earthquakes and generally occur up-dip of the highest-density tremor regions and locations of intraplate earthquakes. Beneath the volcanic arc, the slowest phase velocities correlate with regions of highest magma production volume.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-22
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-09
    Description: SUMMARY Measurements of various physical properties of oceanic sediment and crustal structures provide insight into a number of geological and geophysical processes. In particular, knowledge of the shear wave velocity (VS) structure of marine sediments and oceanic crust has wide ranging implications from geotechnical engineering projects to seismic mantle tomography studies. In this study, we propose a novel approach to nonlinearly invert compliance signals recorded by colocated ocean-bottom seismometers and high-sample-rate pressure gauges for shallow oceanic shear wave velocity structure. The inversion method is based on a type of machine learning neural network known as a mixture density neural network (MDN). We demonstrate the effectiveness of the MDN method on synthetic models with a fixed deployment depth of 2015 m and show that among 30 000 test models, the inverted shear wave velocity profiles achieve an average error of 0.025 km s−1. We then apply the method to observed data recorded by a broad-band ocean-bottom station in the Lau basin, for which a VS profile was estimated using Monte Carlo sampling methods. Using the mixture density network approach, we validate the method by showing that our VS profile is in excellent agreement with the previous result. Finally, we argue that the mixture density network approach to compliance inversion is advantageous over other compliance inversion methods because it is faster and allows for standardized measurements.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-07-27
    Description: The Joint Task Force, Science Monitoring And Reliable Telecommunications (JTF SMART) Subsea Cables, is working to integrate environmental sensors for ocean bottom temperature, pressure, and seismic acceleration into submarine telecommunications cables. The purpose of SMART Cables is to support climate and ocean observation, sea level monitoring, observations of Earth structure, and tsunami and earthquake early warning and disaster risk reduction, including hazard quantification. Recent advances include regional SMART pilot systems that are the first steps to trans-ocean and global implementation. Examples of pilots include: InSEA wet demonstration project off Sicily at the European Multidisciplinary Seafloor and water column Observatory Western Ionian Facility; New Caledonia and Vanuatu; French Polynesia Natitua South system connecting Tahiti to Tubaui to the south; Indonesia starting with short pilot systems working toward systems for the Sumatra-Java megathrust zone; and the CAM-2 ring system connecting Lisbon, Azores, and Madeira. This paper describes observing system simulations for these and other regions. Funding reflects a blend of government, development bank, philanthropic foundation, and commercial contributions. In addition to notable scientific and societal benefits, the telecommunications enterprise’s mission of global connectivity will benefit directly, as environmental awareness improves both the integrity of individual cable systems as well as the resilience of the overall global communications network. SMART cables support the outcomes of a predicted, safe, and transparent ocean as envisioned by the UN Decade of Ocean Science for Sustainable Development and the Blue Economy. As a continuation of the OceanObs’19 conference and community white paper (Howe et al., 2019, doi: 10.3389/fmars.2019.00424), an overview of the SMART programme and a description of the status of ongoing projects are given.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-11-14
    Description: The Joint Task Force, Science Monitoring And Reliable Telecommunications (SMART) Subsea Cables is working to integrate environmental sensors (temperature, pressure, seismic acceleration) into submarine telecommunications cables. This will support climate and ocean observation, sea-level monitoring, observations of Earth structure, tsunami and earthquake early warning, and disaster risk reduction. Recent advances include regional SMART pilot systems that are the initial steps to trans-ocean and global implementation. Building on the OceanObs’19 conference and community white paper (https://doi.org/10.3389/ fmars.2019.00424), this paper presents an overview of the initiative and a description of ongoing projects including: InSea wet demonstration project off Sicily; Vanuatu and New Caledonia; Indonesia; CAM-2 ring system connecting the Portuguese mainland, Azores, and Madeira; New Zealand; and Antarctica. In addition to the diverse scientific and societal benefits, the telecommunications industry’s mission of societal connectivity will also benefit because environmental awareness improves both individual cable system integrity and the resilience of the overall global communications network. Keywords: telecommunication cables, SMART sensors, seafloor sensing, earthquake early warning, tsunami detection
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-02-18
    Description: The Joint Task Force, Science Monitoring And Reliable Telecommunications (JTF SMART) Subsea Cables, is working to integrate environmental sensors for ocean bottom temperature, pressure, and seismic acceleration into submarine telecommunications cables. The purpose of SMART Cables is to support climate and ocean observation, sea level monitoring, observations of Earth structure, and tsunami and earthquake early warning and disaster risk reduction, including hazard quantification. Recent advances include regional SMART pilot systems that are the first steps to trans-ocean and global implementation. Examples of pilots include: InSEA wet demonstration project off Sicily at the European Multidisciplinary Seafloor and water column Observatory Western Ionian Facility; New Caledonia and Vanuatu; French Polynesia Natitua South system connecting Tahiti to Tubaui to the south; Indonesia starting with short pilot systems working toward systems for the Sumatra-Java megathrust zone; and the CAM-2 ring system connecting Lisbon, Azores, and Madeira. This paper describes observing system simulations for these and other regions. Funding reflects a blend of government, development bank, philanthropic foundation, and commercial contributions. In addition to notable scientific and societal benefits, the telecommunications enterprise’s mission of global connectivity will benefit directly, as environmental awareness improves both the integrity of individual cable systems as well as the resilience of the overall global communications network. SMART cables support the outcomes of a predicted, safe, and transparent ocean as envisioned by the UN Decade of Ocean Science for Sustainable Development and the Blue Economy. As a continuation of the OceanObs’19 conference and community white paper (Howe et al., 2019, doi: 10.3389/fmars.2019.00424), an overview of the SMART programme and a description of the status of ongoing projects are given.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-07-07
    Description: Recent research points to complex, multi-layered, transcrustal magmatic systems beneath volcanoes. But constraints on depths of magma storage in the mid-to-deep crust beneath volcanoes remain an enigmatic target. At volcanic arcs, magmatic processes at these depths are a critical link between the input from the slab and mantle wedge, the emplacement processes that build and alter arc crust, and the shallow crustal reservoirs that drive eruptions. Magmatic storage depths and pathways may be governed by a variety of properties, including volatile content, crustal stress regime, prexisting structures, and more. To better understand how these variables may impact arc volcano processes, we must employ techniques that allow us to characterize magma storage depths at volcanoes globally. Here, we investigate receiver functions as a technique to provide systematic, first-order constraints on magma storage depths in the mid-to-deep crust using data from the Alaska-Aleutian island arc as a case study. Receiver functions are sensitive to abrupt seismic velocity boundaries, and have detected low velocity zones in the crust interpreted as magmatic-mush systems at Akutan and Cleveland, two Alaska-Aleutian arc volcanoes. They do not rely on the presence of local seismicity, do not require a wide-aperature array to image the whole crust, and can be analyzed at volcanoes with relatively few (〈 4) local instruments. We present results of the application of this technique across the Alaska-Aleutian arc, and examine along-arc trends in receiver function properties.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-07-07
    Description: The recent proliferation of broadband ocean bottom seismometer (BBOBS) deployments has generated datasets from diverse marine environments, improving our understanding of tectonics and earthquake processes. In turn, the community of scientists using this data has expanded. This growth in BBOBS data collection is likely to persist with the arrival of new seismic seafloor technologies, and continued scientific interest in marine and amphibious targets. However, the noise inherent in OBS data poses a challenge that is markedly different from that of terrestrial data. As a step towards improved understanding of the sources of variability in this noise, we present a new compilation and analysis of BBOBS noise properties from 15 years of US-led seismic deployments. We find evidence for similarity of noise properties when grouped across a variety of parameters, with groupings by seismometer type and deployment water depth yielding the most significant and interpretable results. Instrument design, that is the entire deployed package, also plays an important role, although it strongly covaries with seismometer and water depth. We find that the presence of tilt noise is primarily dependent on the type of seismometer used (covariant with a particular subset of instrument design), that compliance noise follows anticipated relationships with water depth, and that shallow, oceanic shelf environments have systematically different microseism noise properties (which are, in turn, different from instruments deployed in shallow lake environments). We discuss implications for the viability of commonly used seismic analysis techniques, and future directions for improvements in the efficiency of analysis of BBOBS data.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...