ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 2400-2403 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Laser ablation of solid substrates in ambient air and under water is investigated. It is found that the laser ablation rate is highly enhanced by the water film. A wide-band microphone is used to detect the audible acoustic wave generated during laser ablation. Peak-to-peak amplitude of the acoustic wave recorded in water confinement regime (WCR) is greater than that recorded in ambient. It is assumed that the plasma generated in WCR induces a much stronger pressure. This high-pressure, high-temperature plasma results in a much higher ablation rate. Theoretical calculation is also carried out to verify this assumption. By proper calibration, acoustic wave detection can be used as a real-time monitoring of the laser ablation. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 499-504 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A quantitative investigation of laser-induced removal of particles from magnetic head slider surfaces has been carried out. The damage thresholds of magnetic head sliders for laser fluence and pulse number were found to be about 150 mJ/cm2 and 5000 pulses at 100 mJ/cm2, respectively. For laser fluence or pulse number above the damage threshold, laser irradiation onto magnetic head slider surfaces can cause microcracks around the pole tips. It is found that laser cleaning efficiency increases with increasing laser fluence and pulse number, but does not depend on repetition rate up to 30 Hz. Laser cleaning efficiency of removing particles from magnetic head slider surfaces can reach about 90% for Al particles and 100% for Sn particles, respectively, under appropriate conditions without causing damage. The mechanisms of laser cleaning of particles from magnetic head slider are laser-induced surface vibration, particle vibration, particle thermal expansion, and ablation with high laser fluence, which produce forces strong enough to detach particles from slider surfaces. Based on the above cleaning mechanisms, the dependence of laser cleaning efficiency on laser parameters can be explained. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 2186-2191 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Audible acoustic wave generation during excimer laser interaction with materials has been investigated. It is found that the amplitudes of acoustic waves depend on laser fluence, pulse number, and substrate material characteristics and can be used to determine the nature of laser–material interactions. When laser fluence is below the ablation threshold of the materials, the amplitudes are reduced to zero at large pulse number due to the cleaning of contaminants on the substrate surface. As laser fluence becomes higher than the ablation threshold, the amplitudes of acoustic waves also reduce with increasing pulse number but to a constant level instead of zero due to laser ablation of substrate materials. Since the surface contamination can be completely removed by a few pulses at high laser fluence, the constant level is attributed to the material ablation. It is also found that the constant level increases with laser fluence. By establishing a relationship between the amplitudes and laser parameters, real-time monitoring of laser–solid interaction can be achieved. Fast Fourier transform analysis of the wave forms shows that there are several frequency components included in the acoustic waves with a peak around 10.9 kHz as the dominant one, which is related to laser material ablation. The monitoring of the acoustic wave emission can, therefore, be used to find the nature of laser–substrate interaction (i.e., surface cleaning or ablation), and to find the ablation threshold. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 2899-2903 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Laser scattering and its interaction with plasma during KrF excimer laser ablation of silicon are investigated by ultrafast phototube detection. There are two peaks in an optical signal with the first peak attributed to laser scattering and the second one to plasma generation. For laser fluence above 5.8 J/cm2, the second peak rises earlier to overlap with the first one. The optical signal is fitted by a pulse distribution for the scattered laser light and a drifted Maxwell–Boltzmann distribution with a center-of-mass velocity for the plasma. Peak amplitude and its arrival time, full width at half maximum (FWHM), starting time, and termination time of the profiles are studied for different laser fluences and detection angles. Laser pulse is scattered from both the substrate and the plasma with the latter part as a dominant factor during the laser ablation. Peak amplitude of the scattered laser signal increases but its FWHM decreases with the laser fluence. Angular distribution of the peak amplitude can be fitted with cosn θ(n=4) while the detection angle has no obvious influence on the FWHM. In addition, FWHM and peak amplitude of plasma signal increase with the laser fluence. However, starting time and peak arrival time of plasma signal reduce with the laser fluence. The time interval between plasma starting and scattered laser pulse termination is proposed as a quantitative parameter to characterize laser plasma interaction. Threshold fluence for the interaction is estimated to be 3.5 J/cm2. For laser fluence above 12.6 J/cm2, the plasma and scattered laser pulse distributions tend to saturate. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 84 (1998), S. 4403-4409 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Microstructures of 50 nm thick FePt magnetic thin films deposited on Pt buffer layers with various thicknesses (0–500 nm) grown on a Fe seeded MgO (100) substrate have been studied by transmission electron microscopy to correlate them with magnetic properties. High density of planar defects such as twin and antiphase boundary are present in the FePt films. The twins observed in these films are not the {011} twins which are commonly observed in the bulk FePt magnet, but they are the {111} twins. The density and morphology of these twins drastically change depending on the composition of the FePt thin films as well as the thickness of the Pt buffer layer, while that of the antiphase boundary does not show noticeable changes. In the Pt buffer layer, a high density of dislocations is present in order to reduce the elastic strain due to a large lattice mismatch imposed between the Pt layer and the MgO substrate (about 9%). When the thickness of the Pt buffer layer is increased to 500 nm, the Pt and FePt layers show a polycrystalline microstructure having a grain size ranging from 0.3 to 2.0 μm. The origin of the magnetic hardness is discussed based on these microstructural observation results. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 2812-2817 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A tiny metal probe was used to detect electric signals induced at the early stage of laser ablation in air. It is found that the electric signals result from probe ablation, plasma–probe interaction, and plasma-induced electric field. The recorded signals strongly depend on the probe positions. For a probe placed out of the plasma–probe interaction region, the detected electric signal is a negative peak in the nanosecond range, due to the plasma-induced electric field. The peak arrival time corresponds to the total amount of ion emission from the substrate surface, and therefore, does not vary with the probe position. The signal amplitude is inversely proportional to the square of the probe distance, consistent with the distance dependence of the field intensity from an electric dipole. The signal amplitude increases with the laser fluence while the peak arrival time reduces, reflecting the earlier plasma generation at a higher laser fluence. Both peak width and its arrival time of the electric signals increase with laser fluence and tend to saturate above 6.4 J/cm2. The electric signals were analyzed for laser ablation of different substrate materials. The electric signal detection was also applied to monitor the laser cleaning of organic contamination in real time. The mechanism of the electric signal generation and the process of electron and ion emission are briefly discussed. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 3268-3274 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Pulsed-laser assisted nanopatterning of metallic layers on silicon substrates under an atomic force microscope (AFM) tip has been investigated. A 532 nm Nd:YAG pulsed laser with a pulse duration of 7 ns was used. Boron doped silicon tips were used in contact mode. This technique enables processing of structures with a lateral resolution down to 10 nm on the copper layers. Nanopatterns such as pit array and multilines with lateral dimensions between 10 and 60 nm and depths between 1.5 and 7.0 nm have been created. The experimental results and mechanism of the nanostructure formation are discussed. The created features were characterized by AFM, scanning electron microscope and Auger electron spectroscopy. The apparent depth of the created pit has been studied as a function of laser intensity or laser pulse numbers. Dependence of nanoprocessing on the geometry parameters of the tip and on the optical and thermal properties of the processed sample has also been investigated. Thermal expansion of the tip, the field enhancement factor underneath the tip, and the sample surface heating were estimated. It is proposed that field-enhancement mechanism is the dominant reason for this nanoprocessing. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 248-248 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 1396-1398 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Laser ablation of Si under a water surface has been investigated. The laser used is a KrF excimer laser, which has a wavelength of 248 nm and a pulse duration of 23 ns. It is found that the laser ablation rate of Si varies with the thickness of the water layer above the Si substrates. The laser ablation rate is the most highly enhanced with a water layer of 1.1 mm. It is assumed that the plasma generated in the water confinement regime with an optimal water layer thickness induces the strongest pressure. This high-pressure, high-temperature plasma results in the highest ablation rate. A wide-band microphone is used to detect the audible acoustic wave generated during the laser ablation. The amplitude of the acoustic wave is closely related to the ablation rate. It is found that the first peak-to-peak amplitude of the acoustic wave is the strongest when the water layer thickness is 1.1 mm above the substrate. Fast Fourier transform analysis of the wave forms shows that there are several frequency components included in the acoustic waves. The dominant frequency component decreases from 10.6 to 3.5 kHz as the water layer thickness varies from 1 to 2.2 mm. Diagnostics of the acoustic wave emission can be used to find the optimal water layer thickness to enhance the laser ablation rate. With proper calibration, acoustic-wave detection can be used as a real-time monitoring of the laser ablation. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Electrochimica Acta 37 (1992), S. 2437-2442 
    ISSN: 0013-4686
    Keywords: Cl^- ion concentration ; abrading electrode technique ; applied potential ; repassivation kinetics of Ni ; transition time in current decay transients
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...