ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We linked a leaf-level CO2 assimilation model with a model that accounts for light attenuation in the canopy and measurements of sap-flux-based canopy conductance into a new canopy conductance-constrained carbon assimilation (4C-A) model. We estimated canopy CO2 uptake (AnC) at the Duke Forest free-air CO2 enrichment (FACE) study. Rates of AnC estimated from the 4C-A model agreed well with leaf gas exchange measurements (Anet) in both CO2 treatments. Under ambient conditions, monthly sums of net CO2 uptake by the canopy (AnC) were 13% higher than estimates based on eddy-covariance and chamber measurements. Annual estimates of AnC were only 3% higher than carbon (C) accumulations and losses estimated from ground-based measurements for the entire stand. The C budget for the Pinus taeda component was well constrained (within 1% of ground-based measurements). Although the closure of the C budget for the broadleaf species was poorer (within 20%), these species are a minor component of the forest. Under elevated CO2, the C used annually for growth, turnover, and respiration balanced only 80% of the AnC. Of the extra 700 g C m−2 a−1 (1999 and 2000 average), 86% is attributable to surface soil CO2 efflux. This suggests that the production and turnover of fine roots was underestimated or that mycorrhizae and rhizodeposition became an increasingly important component of the C balance. Under elevated CO2, net ecosystem production increased by 272 g C m−2 a−1: 44% greater than under ambient CO2. The majority (87%) of this C was sequestered in a moderately long-term C pool in wood, with the remainder in the forest floor–soil subsystem.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 8 (2002), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Net primary production and the flux of dry matter and nutrients from vegetation to soils has increased following four years of exposure to elevated CO2 in a southern pine forest in NC, USA. This has increased the demand for nutrients to support enhanced rates of NPP and altered the conditions for litter decomposition on the forest floor. We quantified the chemistry and decomposition dynamics of leaf litter produced by five of the most abundant tree species in this ecosystem during the third and fourth growing seasons under elevated CO2. The objectives of this study were to determine (i) if there were systemic or species-specific changes in leaf litter chemistry associated with a sustained enhancement of plant growth under elevated CO2; and (ii) whether the process of litter decomposition was altered by increased inputs of energy and nutrients to the forest floor in the plots under elevated CO2. Leaf litter chemistry, including various C fractions and N concentration, was virtually unchanged by elevated CO2. With few exceptions, plant litter produced under elevated CO2 lost mass or N at the same relative rate as that produced under ambient CO2. The relationship between initial litter chemistry and decomposition was not altered by elevated CO2. The greater forest floor mass and nutrient content in the plots under elevated CO2 had no consistent or long-term effect on litter decomposition. Thus, we found no evidence that plant and microbial processes under elevated CO2 resulted in systemic changes in mass loss or N dynamics during decomposition. In contrast to the limited effects of elevated CO2 on litter chemistry and decomposition, there were large differences among species in initial litter chemistry, mass loss and N dynamics during decomposition. If the species composition of this forest community is altered by elevated CO2, the indirect effect of a change in species composition will exert greater control over the long-term rate of nutrient cycling than the direct effect of elevated CO2 on litter chemistry and decomposition dynamics alone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 42 (1998), S. 1-19 
    ISSN: 1573-515X
    Keywords: competition ; ecosystem engineer ; feedback ; forest soils ; nutrient cycling ; N2 fixation ; succession
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Building on the concept of plants as ecosystem engineers, and on published information on effects of particular plant species on soils, we review the evidence that such effects can provide a positive feedback to such plants. Based on case studies involving dune formation by Marram grass, N supply by N2-fixing plants, depression of N availability by ericaceous plants, ‘islands of fertility’ in deserts, mull- and mor-forming temperate forest trees, and formation of peatbogs, as well as similar other cases, we conclude that there is strong evidence for plant-soil feedbacks in a variety of ecosystems. We argue, moreover, that these feedbacks could have played a role in the evolution of the plant species in question. These ideas are based mainly on correlative observations, and need further testing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2011. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 9 (2011): 74–80, doi:10.1890/100137.
    Description: The analysis of coupled biogeochemical cycles (CBCs) addresses the scientific basis for some of today's major environmental problems. Drawing from information presented at a series of sessions on CBCs held at the 2009 Annual Meeting of the Ecological Society of America and from the research community's expertise, we identify several principal research themes that justify action and investment. Critical areas for research include: coupling of major element cycles to less studied yet equally important trace element cycles; analyzing CBCs across ecosystem boundaries; integrating experimental results into regional- and global-scale models; and expanding the analysis of human interactions with CBCs arising from human population growth, urbanization, and geoengineering. To advance the current understanding of CBCs and to address the environmental challenges of the 21st century, scientists must maintain and synthesize data from existing observational and experimental networks, develop new instrumentation networks, and adopt emerging technologies.
    Description: We thank the National Science Foundation (NSF) and the Ecological Society of America (ESA) for their financial and logistical support of the Coupled Biogeochemical Cycles sessions held at the 2009 ESA Annual Meeting, and the publication of this special feature issue of Frontiers. ACF was supported by the NSF (DEB- 0743564) and the US Department of Energy’s (DOE’s) Office of Biological and Environmental Research (10- DOE-1053). SCD was supported by the Center for Microbial Oceanography, Research and Education (NSF EF-0424599). RBJ was supported by the NSF (DEB #0717191) and by the DOE’s National Institute for Climate Change Research.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeochemistry 114 (2013): 11-23, doi:10.1007/s10533-012-9801-5.
    Description: Human actions have both intentionally and unintentionally altered the global economy of nitrogen (N), with both positive and negative consequences for human health and welfare, the environment and climate change. Here we examine long-term trends in reactive N (Nr) creation and efficiencies of Nr use within the continental US. We estimate that human actions in the US have increased Nr inputs by at least ~5 times compared to pre-industrial conditions. Whereas N2 fixation as a by-product of fossil fuel combustion accounted for ~1/4 of Nr inputs from the 1970s to 2000 (or ~7 Tg N year−1), this value has dropped substantially since then (to 〈5 Tg N year−1), owing to Clean Air Act amendments. As of 2007, national N use efficiency (NUE) of all combined N inputs was equal to ~40 %. This value increases to 55 % when considering intentional N inputs alone, with food, industrial goods, fuel and fiber production accounting for the largest Nr sinks, respectively. We estimate that 66 % of the N lost during the production of goods and services enters the air (as NO x , NH3, N2O and N2), with the remaining 34 % lost to various waterways. These Nr losses contribute to smog formation, acid rain, eutrophication, biodiversity declines and climate change. Hence we argue that an improved national NUE would: (i) benefit the US economy on the production side; (ii) reduce social damage costs; and (iii) help avoid some major climate change risks in the future.
    Description: This work resulted from a workshop supported by NSF Research Coordination Network Awards DEB-0443439 and DEB-1049744 and by the David and Lucille Packard Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Plant Science 5 (2015): 793, doi:10.3389/fpls.2014.00793.
    Description: Human activities have greatly altered global carbon (C) and Nitrogen (N) cycling. In fact, atmospheric concentrations of carbon dioxide (CO2) have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global CO2 fertilization, long-term free-air CO2 enrichment experiments have been conducted at sites around the globe. Here we examine how atmospheric CO2 enrichment and N fertilization affects the uptake of silicon (Si) in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblolly pine), and five hardwood species. Specifically, we measured foliar biogenic silica concentrations in five deciduous and one coniferous species across three treatments: CO2 enrichment, N enrichment, and N and CO2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO2, N fertilization, or combined elevated CO2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO2 concentrations. Due largely to increased primary production, elevated CO2 enhanced the magnitude of Si uptake between 20 and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.
    Description: This research was supported in part by the Sloan Foundation in a fellowship to Robinson W. Fulweiler. The Duke Forest FACE was supported by his study was supported by the US Department of Energy (Grant No. DE-FG02-95ER62083) through the Office of Biological and Environmental Research (BER) and its National Institute for Global Environmental Change (NIGEC), Southeast Regional Center (SERC) at the University of Alabama, and by the US Forest Service through both the Southern Global Climate Change Program and the Southern Research Station. Adrien C. Finzi acknowledges ancillary support from the US NSF (DEB0236356).
    Keywords: Elevated CO2 ; Silicon ; Forest Si uptake ; Terrestrial Si pump ; Active Si accumulation ; Si cycling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1994-02-01
    Description: We have analyzed the light transmission characteristics of the nine deciduous and coniferous species that dominate the transition oak–northern hardwood forests of southern New England. Maximum likelihood techniques were used to estimate species-specific light extinction coefficients, using fish-eye photography combined with data on the locations and geometry of trees in the neighborhood around each photo point. Quantum sensors were also used to quantify interspecific variation in the importance of sunflecks and beam enrichment. Variation in light extinction was closely correlated with shade tolerance and successional status of the species. The most shade-tolerant species (Fagusgrandifolia Ehrh. and Tsugacanadensis (L.) Carr.) cast the deepest shade (5% full sun). These differences were more closely related to differences in crown depth than to differences in light extinction per unit depth of crown. Sunflecks contributed relatively little radiation beneath late successional species (
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-03-01
    Print ISSN: 0038-0717
    Electronic ISSN: 1879-3428
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-11-01
    Print ISSN: 0038-0717
    Electronic ISSN: 1879-3428
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...