ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The magnitude of changes in carboxylation capacity in dominant plant species under long-term elevated CO2 exposure (elevated pCa) directly impacts ecosystem CO2 assimilation from the atmosphere. We analyzed field CO2 response curves of 16 C3 species of different plant growth forms in favorable growth conditions in four free-air CO2 enrichment (FACE) experiments in a pine and deciduous forest, a grassland and a desert. Among species and across herb, tree and shrub growth forms there were significant enhancements in CO2 assimilation (A) by +40±5% in elevated pCa (49.5–57.1 Pa), although there were also significant reductions in photosynthetic capacity in elevated pCa in some species. Photosynthesis at a common pCa (Aa) was significantly reduced in five species growing under elevated pCa, while leaf carboxylation capacity (Vcmax) was significantly reduced by elevated pCa in seven species (change of −19±3% among these species) across different growth forms and FACE sites. Adjustments in Vcmax with elevated pCa were associated with changes in leaf N among species, and occurred in species with the highest leaf N. Elevated pCa treatment did not affect the mass-based relationships between A or Vcmax and N, which differed among herbs, trees and shrubs. Thus, effects of elevated pCa on leaf C assimilation and carboxylation capacity occurred largely through changes in leaf N, rather than through elevated pCa effects on the relationships themselves. Maintenance of leaf carboxylation capacity among species in elevated pCa at these sites depends on maintenance of canopy N stocks, with leaf N depletion associated with photosynthetic capacity adjustments. Since CO2 responses can only be measured experimentally on a small number of species, understanding elevated CO2 effects on canopy Nm and Na will greatly contribute to an ability to model responses of leaf photosynthesis to atmospheric CO2 in different species and plant growth forms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We linked a leaf-level CO2 assimilation model with a model that accounts for light attenuation in the canopy and measurements of sap-flux-based canopy conductance into a new canopy conductance-constrained carbon assimilation (4C-A) model. We estimated canopy CO2 uptake (AnC) at the Duke Forest free-air CO2 enrichment (FACE) study. Rates of AnC estimated from the 4C-A model agreed well with leaf gas exchange measurements (Anet) in both CO2 treatments. Under ambient conditions, monthly sums of net CO2 uptake by the canopy (AnC) were 13% higher than estimates based on eddy-covariance and chamber measurements. Annual estimates of AnC were only 3% higher than carbon (C) accumulations and losses estimated from ground-based measurements for the entire stand. The C budget for the Pinus taeda component was well constrained (within 1% of ground-based measurements). Although the closure of the C budget for the broadleaf species was poorer (within 20%), these species are a minor component of the forest. Under elevated CO2, the C used annually for growth, turnover, and respiration balanced only 80% of the AnC. Of the extra 700 g C m−2 a−1 (1999 and 2000 average), 86% is attributable to surface soil CO2 efflux. This suggests that the production and turnover of fine roots was underestimated or that mycorrhizae and rhizodeposition became an increasingly important component of the C balance. Under elevated CO2, net ecosystem production increased by 272 g C m−2 a−1: 44% greater than under ambient CO2. The majority (87%) of this C was sequestered in a moderately long-term C pool in wood, with the remainder in the forest floor–soil subsystem.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 5 (1999), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: A free-air CO2 enrichment (FACE) system was designed to permit the experimental exposure of tall vegetation such as stands of forest trees to elevated atmospheric CO2 concentrations ([CO2]a) without enclosures that alter tree microenvironment. We describe a prototype FACE system currently in operation in forest plots in a maturing loblolly pine (Pinus taeda L.) stand in North Carolina, USA. The system uses feedback control technology to control [CO2] in a 26 m diameter forest plot that is over 10 m tall, while monitoring the 3D plot volume to characterize the whole-stand CO2 regime achieved during enrichment. In the second summer season of operation of the FACE system, atmospheric CO2 enrichment was conducted in the forest during all daylight hours for 96.7% of the scheduled running time from 23 May to 14 October with a preset target [CO2] of 550 μmol mol–1, ≈ 200 μmol mol–1 above ambient [CO2]. The system provided spatial and temporal control of [CO2] similar to that reported for open-top chambers over trees, but without enclosing the vegetation. The daily average daytime [CO2] within the upper forest canopy at the centre of the FACE plot was 552 ± 9 μmol mol–1 (mean ± SD). The FACE system maintained 1-minute average [CO2] to within ± 110 μmol mol–1 of the target [CO2] for 92% of the operating time. Deviations of [CO2] outside of this range were short-lived (most lasting 〈 60 s) and rare, with fewer than 4 excursion events of a minute or longer per day. Acceptable spatial control of [CO2] by the system was achieved, with over 90% of the entire canopy volume within ± 10% of the target [CO2] over the exposure season. CO2 consumption by the FACE system was much higher than for open-top chambers on an absolute basis, but similar to that of open-top chambers and branch bag chambers on a per unit volume basis. CO2 consumption by the FACE system was strongly related to windspeed, averaging 50 g CO2 m–3 h–1 for the stand for an average windspeed of 1.5 m s–1 during summer. The [CO2] control results show that the free-air approach is a tractable way to study long-term and short-term alterations in trace gases, even within entire tall forest ecosystems. The FACE approach permits the study of a wide range of forest stand and ecosystem processes under manipulated [CO2]a that were previously impossible or intractable to study in true forest ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Key words Respiration ; Leaf life-span ; Specific leaf area ; Nitrogen ; Functional groups
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass−N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2≥ 0.79, P 〈 0.0001). At any given SLA, R d-mass rises with increasing N mass and/or decreasing leaf life-span; and at any level of N mass, R d-mass rises with increasing SLA and/or decreasing leaf life-span. The relationships between R d and leaf traits observed in this study support the idea of a global set of predictable interrelationships between key leaf morphological, chemical and metabolic traits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Keywords: Elevated CO2 ; Forest ecosystem ; Photosynthesis ; Pinus taeda ; Stomata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Physiological responses to elevated CO2 at the leaf and canopy-level were studied in an intact pine (Pinus taeda) forest ecosystem exposed to elevated CO2 using a free-air CO2 enrichment (FACE) technique. Normalized canopy water-use of trees exposed to elevated CO2 over an 8-day exposure period was similar to that of trees exposed to current ambient CO2 under sunny conditions. During a portion of the exposure period when sky conditions were cloudy, CO2-exposed trees showed minor (≤7%) but significant reductions in relative sap flux density compared to trees under ambient CO2 conditions. Short-term (minutes) direct stomatal responses to elevated CO2 were also relatively weak (≈5% reduction in stomatal aperture in response to high CO2 concentrations). We observed no evidence of adjustment in stomatal conductance in foliage grown under elevated CO2 for nearly 80 days compared to foliage grown under current ambient CO2, so intrinsic leaf water-use efficiency at elevated CO2 was enhanced primarily by direct responses of photosynthesis to CO2. We did not detect statistical differences in parameters from photosynthetic responses to intercellular CO2 (A net-C i curves) for Pinus taeda foliage grown under elevated CO2 (550 μmol mol−1) for 50–80 days compared to those for foliage grown under current ambient CO2 from similar-sized reference trees nearby. In both cases, leaf net photosynthetic rate at 550 μmol mol−1 CO2 was enhanced by approximately 65% compared to the rate at ambient CO2 (350 μmol mol−1). A similar level of enhancement under elevated CO2 was observed for daily photosynthesis under field conditions on a sunny day. While enhancement of photosynthesis by elevated CO2 during the study period appears to be primarily attributable to direct photosynthetic responses to CO2 in the pine forest, longer-term CO2 responses and feedbacks remain to be evaluated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-07-21
    Description: Nutrient availability, especially of nitrogen (N) and phosphorus (P), is of major importance for every organism and at a larger scale for ecosystem functioning and productivity. Changes in nutrient availability and potential stoichiometric imbalance due to anthropogenic nitrogen deposition might lead to nutrient deficiency or alter ecosystem functioning in various ways. In this study, we present 6 years (2014–2020) of flux‐, plant‐, and remote sensing data from a large‐scale nutrient manipulation experiment conducted in a Mediterranean savanna‐type ecosystem with an emphasis on the effects of N and P treatments on ecosystem‐scale water‐use efficiency (WUE) and related mechanisms. Two plots were fertilized with N (NT, 16.9 Ha) and N + P (NPT, 21.5 Ha), and a third unfertilized plot served as a control (CT). Fertilization had a strong impact on leaf nutrient stoichiometry only within the herbaceous layer with increased leaf N in both fertilized treatments and increased leaf P in NPT. Following fertilization, WUE in NT and NPT increased during the peak of growing season. While gross primary productivity similarly increased in NT and NPT, transpiration and surface conductance increased more in NT than in NPT. The results show that the NPT plot with higher nutrient availability, but more balanced N:P leaf stoichiometry had the highest WUE. On average, higher N availability resulted in a 40% increased leaf area index (LAI) in both fertilized treatments in the spring. Increased LAI reduced aerodynamic conductance and thus evaporation at both fertilized plots in the spring. Despite reduced evaporation, annual evapotranspiration increased by 10% (48.6 ± 28.3 kg H2O m−2), in the NT plot, while NPT remained similar to CT (−1%, −6.7 ± 12.2 kgH2O m−2). Potential causes for increased transpiration at NT could be increased root biomass and thus higher water uptake or rhizosphere priming to increase P‐mobilization through microbes. The annual net ecosystem exchange shifted from a carbon source in CT (75.0 ± 20.6 gC m−2) to carbon‐neutral in both fertilized treatments [−7.0 ± 18.5 gC m−2 (NT) 0.4 ± 22.6 gC m−2 (NPT)]. Our results show, that the N:P stoichiometric imbalance, resulting from N addition (without P), increases the WUE less than the addition of N + P, due to the strong increase in transpiration at NT, which indicates the importance of a balanced N and P content for WUE.
    Description: Plain Language Summary: The availability of nutrients like nitrogen (N) and phosphorus (P) is important for every living organism on Earth. Due to human activities, especially combustion processes large amounts of N are transported into the atmosphere and ecosystems. Therefore, ecosystems receive additional N but no other nutrients. We are investigating if the addition of N alone will lead to deficits in other nutrients and thus impact the functioning of ecosystems. Hence, we set up a large‐scale ecosystem experiment in a Mediterranean tree‐grass ecosystem where we fertilized two plots with N (16.9 ha) and N + P (21.5 ha). A third plot served as the control treatment. While the N‐only treatment created an imbalance between the available N and P, this imbalance was relieved in the N + P treatment where both N and P were provided. Our measurements showed that both fertilized treatments increased their carbon uptake and turned the ecosystem from a carbon source to carbon neutral. One of the main differences between the fertilized treatments which is associated with the imbalance of available N and P is the loss of water through the vegetation (transpiration). This increase in transpiration was only observed in the N‐only but not in the N + P treatment. Our results show, that the N:P stoichiometric imbalance, resulting from N‐only addition, increases the water‐use efficiency (i.e., the carbon gain per water loss) less than the addition of N + P, due to the strong increase in transpiration at the N‐only treatment.
    Description: Key Points: Stoichiometric N:P‐ratio imbalance increases ecosystem transpiration. High nitrogen availability increases carbon uptake and changed the ecosystem from a carbon source to carbon neutral. Ecosystem scale functional relationships are altered through nutrient availability and imbalance.
    Description: Ministerio de Economía y Competitividad http://dx.doi.org/10.13039/501100003329
    Description: Deutsches Zentrum für Luft‐ und Raumfahrt http://dx.doi.org/10.13039/501100002946
    Keywords: 577.2 ; Eddy covariance ; MANIP ; nutrient availability ; stoichiometric imbalance ; transpiration ; water use efficiency
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1994-10-01
    Description: Canopy nutrition, leaf chlorophyll concentration, and leaf CO2 assimilation capacity (Amax) were examined in sugar maple (Acersaccharum Marsh.) trees exhibiting symptoms of crown dieback in four stands on acid soils (pH ≈ 4.0) in northern Vermont. Leaf CO2 assimilation capacity was measured on foliage from detached and rehydrated branches harvested from the upper portion of the canopy. Leaf calcium (Ca) and magnesium (Mg) concentrations were among the lowest reported for sugar maple in its natural range. Total leaf chlorophyll concentrations of canopy leaves were lowest on the sites exhibiting the lowest leaf nitrogen (N) and Ca, and CO2 assimilation capacity was correlated with chlorophyll concentration among canopy leaves from all sites. Strong linear relationships were observed between leaf CO2 assimilation capacity per unit leaf mass and leaf N (r2 = 0.60) as well as leaf Ca (r2 = 0.51) among the four sites. On the basis of the observed strong correlation between leaf Ca and leaf N (r2 = 0.64) and the lack of clear enhancement of leaf CO2 assimilation capacity in trees fertilized with base cations (K, Ca, and Mg), it appears that leaf CO2 assimilation capacity and leaf Ca may not necessarily be functionally related. However, since low leaf CO2 assimilation capacity and photosynthetic N-use efficiency were common in unfertilized trees with low Ca (Ca 〈 0.6%), CO2 assimilation processes in sugar maple on acid soils may be limited by N and Ca × Mg interactions. The strongly acidic nature of the soils in these stands and the magnitude of acidic deposition in the region may precondition sugar maple trees on some sites to levels of cation deficiency that may be associated with low CO2 assimilation in the forest canopy.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...