ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-07-15
    Print ISSN: 0013-936X
    Electronic ISSN: 1520-5851
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2019-05-08
    Description: Wintertime ammonium nitrate aerosol pollution is a severe air quality issue affecting both developed and rapidly urbanizing regions from Europe to East Asia. In the United States, it is acute in western basins subject to inversions that confine pollutants near the surface. Measurements and modeling of a wintertime pollution episode in Salt Lake Valley, Utah, demonstrate that ammonium nitrate is closely related to photochemical ozone through a common parameter, total odd oxygen, Ox,total. We show that the traditional nitrogen oxide and volatile organic compound (NOx-VOC) framework for evaluating ozone mitigation strategies also applies to ammonium nitrate. Despite being nitrate-limited, ammonium nitrate aerosol pollution in Salt Lake Valley is responsive to VOCs control and, counterintuitively, not initially responsive to NOx control. We demonstrate simultaneous nitrate limitation and NOx saturation and suggest this phenomenon may be general. This finding may identify an unrecognized control strategy to address a global public health issue in regions with severe winter aerosol pollution. ©2019. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-03-18
    Description: The relationship between cloud condensation nuclei (CCN) number and the physical and chemical properties of the atmospheric aerosol distribution is explored for a polluted urban data set from the Study of Organic Aerosols at Riverside I (SOAR-1) campaign conducted at Riverside, California, USA during summer 2005. The mixing state and, to a lesser degree, the average chemical composition are shown to be important parameters in determining the activation properties of those particles around the critical activation diameters for atmospherically-realistic supersaturation values. Closure between predictions and measurements of CCN number at several supersaturations is attempted by modeling a number of aerosol chemical composition and mixing state schemes of increasing complexity. It is shown that a realistic treatment of the state of mixing of the urban aerosol distribution is critical in order to eliminate model bias. Fresh emissions such as elemental carbon and small organic particles must be treated as non-activating and explicitly accounted for in the model scheme. The relative number concentration of these particles compared to inorganics and oxygenated organic compounds of limited hygroscopicity plays an important role in determining the CCN number. Furthermore, expanding the different composition/mixing state schemes to predictions of cloud droplet number concentration in a cloud parcel model highlights the dependence of cloud optical properties on the state of mixing and hygroscopic properties of the different aerosol modes, but shows that the relative differences between the different schemes are reduced compared to those from the CCN model.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-12-23
    Description: In this study we present results from the factor analysis of 43 aerosol mass spectrometer (AMS) datasets and provide an overview of worldwide organic aerosol (OA) components and their evolution in the atmosphere. At most sites, the OA can be separated into oxygenated OA (OOA), hydrocarbon-like OA (HOA), and sometimes other components such as biomass burning OA (BBOA). In many analyses, the OOA can be further deconvolved into low-volatility OOA (LV-OOA) and semi-volatile OOA (SV-OOA). A wide range of f44 (ratio of m/z 44 to total signal in the component mass spectrum) and O:C ratios are observed for both LV-OOA (0.17±0.04, 0.73±0.14) and SV-OOA (0.07±0.04, 0.35±0.14) components, reflecting the fact that there is a continuum of OOA properties in ambient aerosol. Differences in the mass spectra of these components are characterized in terms of the two main ions m/z 44 (CO2+) and m/z 43 (mostly C2H3O+). The LV-OOA component spectra have higher f44 and lower f43 than SV-OOA. The OOA components (OOA, LV-OOA, and SV-OOA) from all sites cluster within a well defined triangular region in the f44 vs. f43 space, which can be used as a standardized means of comparing and characterizing any OOA components (laboratory or ambient) observed with the AMS. Examination of the OOA components in this triangular space indicates that OOA component spectra become increasingly similar to each other and to fulvic acid and HULIS sample spectra as f44 (a surrogate for O:C and an indicator of photochemical aging) increases. This indicates that ambient OA converges towards highly aged LV-OOA with atmospheric oxidation. The common features of the transformation between SV-OOA and LV-OOA at multiple sites potentially enables a simplified description of the oxidation of OA in the atmosphere. Comparison of laboratory SOA data with ambient OOA indicates that laboratory SOA are more similar to SV-OOA, and rarely become as oxidized as ambient LV-OOA, likely due to the higher loadings employed in the experiments and/or limited oxidant exposure in most chamber experiments.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-09-27
    Description: Laboratory smog chamber experiments have been carried out to investigate secondary organic aerosol (SOA) formation from the photooxidation of naphthalene and its methyl analogs, 1- and 2-methylnaphthalene (1-MN and 2-MN, respectively). Laboratory smog chamber irradiations were conducted in a flow mode to ensure adequate collection of the aerosol at reasonably low reactant concentrations and in the presence and absence of nitrogen oxides. Phthalic acid and methyl analogs were identified following BSTFA derivatization of the aerosol extract. These compounds were examined to determine whether they could serve as reasonable molecular tracers to estimate the contributions of these precursors to ambient PM2.5. Measurements were also made to determine aerosol parameters from secondary organic aerosol from naphthalene, 1-MN, and 2-MN. A mass fraction approach was used to establish factors which could be applied to phthalic acid concentrations in ambient aerosols, assuming a negligible contribution from primary sources. Phthalic anhydride uptake (and hydrolysis) was tested and found to represent a moderate filter artifact in filter measurements with and without in-line denuders. This study provided the opportunity to examine differences using authentic standards for phthalic acid compared to surrogate standards. While the mass fraction based on a surrogate compounds was somewhat lower, the differences are largely unimportant. For naphthalene, mass fractions of 0.0199 (recommended for ambient samples) and 0.0206 were determined in the presence and absence of nitrogen oxides, respectively, based on phthalic acid standards. The mass fractions determined from the laboratory data were applied to ambient samples where phthalic acid was found and expressed "as naphthalene" since phthalic acid was found to be produced in the particle phase from other methylnaphthalenes. The mass fraction values were applied to samples taken during the 2005 SOAR Study in Riverside, CA and 2010 CalNex Study in Pasadena. In both studies an undetermined isomer of methylphthalic acid was detected in addition to phthalic acid. Laboratory experiment retention times and mass spectra suggest that the major precursor for this compound is 2-MN. For the CalNex Study, SOC values for the 2-ring precursor PAHs (as naphthalene) were found to range from below the detection limit to 20 ngC m−3 which with the laboratory mass fraction data suggests an upper limit of approximately 1 μg m−3 for SOA due to 2-ring PAHs. Temporal data over the course of the one-month CalNex study suggest that primary sources of phthalic acid were probably negligible during this study period. However, the values must still be considered upper limits given a potential hydrolysis reaction or uptake of phthalic anhydride (subsequently hydrolyzed) onto the collection media.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-10-12
    Description: In this paper we report chemically resolved measurements of organic aerosol (OA) and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at the Blodgett Forest Research Station, California from 15 August–10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA). The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1) aged biomass burning emissions and oxidized urban emissions, (2) oxidized urban emissions (3) oxidation products of monoterpene emissions, (4) monoterpene emissions, (5) anthropogenic emissions and (6) local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August–12 September) due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September–10 October), even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO), consistent with previous observations, while being comprised of mostly non-fossil carbon (〉75%). The correlation between OA and an anthropogenic tracer does not necessarily identify the source of the carbon as being anthropogenic but instead suggests a coupling between the anthropogenic and biogenic components in the air mass that might be related to the source of the oxidant and/or the aerosol sulfate. Observations of organosulfates of isoprene and α-pinene provided evidence for the likely importance of aerosol sulfate in spite of neutralized aerosol although acidic plumes might have played a role upwind of the site. This is in contrast to laboratory studies where strongly acidic seed aerosols were needed in order to form these compounds. These compounds together represented only a minor fraction (
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-12-07
    Description: We report the first hourly in-situ measurements of speciated organic aerosol (OA) composition in an urban environment. Field measurements were made in southern California at the University of California–Riverside during the 2005 Study of Organic Aerosol at Riverside (SOAR), which included two separate measurement periods: a summer study (15 July–15 August) and a fall study (31 October–28 November). Hourly measurements of over 300 semivolatile and nonvolatile organic compounds were made using the thermal desorption aerosol gas chromatograph (TAG). Positive matrix factorization (PMF) was performed on a subset of these compounds to identify major components contributing to submicron (i.e., PM1) OA at the site, as measured by an aerosol mass spectrometer (AMS). PMF analysis was performed on an 11-day focus period in each season, representing average seasonal conditions during the summer and a period of urban influence during the fall. As a result of this analysis, we identify multiple types of primary and secondary OA (POA and SOA). Secondary sources contribute substantially to fine OA mass at Riverside, which commonly receives regional air masses that pass through metropolitan Los Angeles during the summer. Four individual summertime SOA components are defined, and when combined, they are estimated to contribute an average 88% of the total fine OA mass during summer afternoons according to PMF results. These sources appear to be mostly from the oxidation of anthropogenic precursor gases, with one SOA component having contributions from oxygenated biogenics. During the fall, three out of four aerosol components that contain SOA are inseparable from covarying primary emissions, and therefore we cannot estimate the fraction of total OA that is secondary in nature during the fall study. Identified primary OA components are attributed to vehicle emissions, food cooking, primary biogenics, and biomass burning aerosol. While a distinction between local and regional vehicle emissions is made, a combination of these two factors accounted for approximately 11% of observed submicron OA during both sampling periods. Food cooking operations contributed ~10% of submicron OA mass during the summer, but was not separable from SOA during the fall due to high covariance of sources. Biomass burning aerosol contributed a larger fraction of fine OA mass during the fall (~11%) than compared to summer (~7%). Primary biogenic aerosol was also identified during the summer, contributing ~1% of the OA, but not during the fall. While the contribution of both local and regional primary vehicle OA accounts for only ~11% of total OA during both seasons, gas-phase vehicle emissions likely create a substantial fraction of the observed SOA as a result of atmospheric processing.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-09-26
    Description: The relationship between cloud condensation nuclei (CCN) number and the physical and chemical properties of the atmospheric aerosol distribution is explored for a polluted urban data set from the Study of Organic Aerosols at Riverside I (SOAR-1) campaign conducted at Riverside, California, USA during summer 2005. The mixing state and, to a lesser degree, the average chemical composition are shown to be important parameters in determining the activation properties of those particles around the critical activation diameters for atmospherically-realistic supersaturation values. Closure between predictions and measurements of CCN number at several supersaturations is attempted by modeling a number of aerosol chemical composition and mixing state cases of increasing complexity. It is shown that a realistic treatment of the state of mixing of the urban aerosol distribution is critical in order to eliminate model bias. Fresh emissions such as elemental carbon and small organic particles must be treated as non-activating and explicitly accounted for in the model. The relative number concentration of these particles compared to inorganics and oxygenated organic compounds of limited hygroscopicity plays an important role in determining the CCN number. Furthermore, expanding the different composition/mixing state cases to predictions of cloud droplet number concentration in a cloud parcel model highlights the dependence of cloud optical properties on the state of mixing and hygroscopic properties of the different aerosol modes, but shows that the relative differences between the different cases are reduced compared to those from the CCN model.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-09-01
    Description: We present roughly one month of high time-resolution, direct, in situ measurements of gas-phase glyoxal acquired during the BEARPEX 2007 field campaign. The research site, located on a ponderosa pine plantation in the Sierra Nevada mountains, is strongly influenced by biogenic volatile organic compounds (BVOCs); thus this data adds to the few existing measurements of glyoxal in BVOC-dominated areas. The short lifetime of glyoxal of ~1 h, the fact that glyoxal mixing ratios are much higher during high temperature periods, and the results of a photochemical model demonstrate that glyoxal is strongly influenced by BVOC precursors during high temperature periods. A zero-dimensional box model using near-explicit chemistry from the Leeds Master Chemical Mechanism v3.1 was used to investigate the processes controlling glyoxal chemistry during BEARPEX 2007. The model showed that MBO is the most important glyoxal precursor (~67 %), followed by isoprene (~26 %) and methylchavicol (~6 %), a precursor previously not commonly considered for glyoxal production. The model calculated a noon lifetime for glyoxal of ~0.9 h, making glyoxal well suited as a local tracer of VOC oxidation in a forested rural environment; however, the modeled glyoxal mixing ratios over-predicted measured glyoxal by a factor 2 to 5. Loss of glyoxal to aerosol was not found to be significant, likely as a result of the very dry conditions, and could not explain the over-prediction. Although several parameters, such as an approximation for advection, were found to improve the model measurement discrepancy, reduction in OH was by far the most effective. Reducing model OH concentrations to half the measured values decreased the glyoxal over-prediction from a factor of 2.4 to 1.1, as well as the overprediction of HO2 from a factor of 1.64 to 1.14. Our analysis has shown that glyoxal is particularly sensitive to OH concentration compared to other BVOC oxidation products. This relationship arises from (i) the predominantly secondary- or higher-generation production of glyoxal from (mainly OH-driven, rather than O3-driven) BVOC oxidation at this site and (ii) the relative importance of photolysis in glyoxal loss as compared to reaction with OH. We propose that glyoxal is a useful tracer for OH-driven BVOC oxidation chemistry.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...