ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-07-10
    Description: Recent advances in sequencing technologies have initiated an era of personal genome sequences. To date, human genome sequences have been reported for individuals with ancestry in three distinct geographical regions: a Yoruba African, two individuals of northwest European origin, and a person from China. Here we provide a highly annotated, whole-genome sequence for a Korean individual, known as AK1. The genome of AK1 was determined by an exacting, combined approach that included whole-genome shotgun sequencing (27.8x coverage), targeted bacterial artificial chromosome sequencing, and high-resolution comparative genomic hybridization using custom microarrays featuring more than 24 million probes. Alignment to the NCBI reference, a composite of several ethnic clades, disclosed nearly 3.45 million single nucleotide polymorphisms (SNPs), including 10,162 non-synonymous SNPs, and 170,202 deletion or insertion polymorphisms (indels). SNP and indel densities were strongly correlated genome-wide. Applying very conservative criteria yielded highly reliable copy number variants for clinical considerations. Potential medical phenotypes were annotated for non-synonymous SNPs, coding domain indels, and structural variants. The integration of several human whole-genome sequences derived from several ethnic groups will assist in understanding genetic ancestry, migration patterns and population bottlenecks.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860965/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860965/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jong-Il -- Ju, Young Seok -- Park, Hansoo -- Kim, Sheehyun -- Lee, Seonwook -- Yi, Jae-Hyuk -- Mudge, Joann -- Miller, Neil A -- Hong, Dongwan -- Bell, Callum J -- Kim, Hye-Sun -- Chung, In-Soon -- Lee, Woo-Chung -- Lee, Ji-Sun -- Seo, Seung-Hyun -- Yun, Ji-Young -- Woo, Hyun Nyun -- Lee, Heewook -- Suh, Dongwhan -- Lee, Seungbok -- Kim, Hyun-Jin -- Yavartanoo, Maryam -- Kwak, Minhye -- Zheng, Ying -- Lee, Mi Kyeong -- Park, Hyunjun -- Kim, Jeong Yeon -- Gokcumen, Omer -- Mills, Ryan E -- Zaranek, Alexander Wait -- Thakuria, Joseph -- Wu, Xiaodi -- Kim, Ryan W -- Huntley, Jim J -- Luo, Shujun -- Schroth, Gary P -- Wu, Thomas D -- Kim, HyeRan -- Yang, Kap-Seok -- Park, Woong-Yang -- Kim, Hyungtae -- Church, George M -- Lee, Charles -- Kingsmore, Stephen F -- Seo, Jeong-Sun -- HG004221/HG/NHGRI NIH HHS/ -- P20 RR016480/RR/NCRR NIH HHS/ -- P20 RR016480-08/RR/NCRR NIH HHS/ -- RR016480/RR/NCRR NIH HHS/ -- U01 AI066569/AI/NIAID NIH HHS/ -- U01 AI066569-04/AI/NIAID NIH HHS/ -- U19 HD077693/HD/NICHD NIH HHS/ -- England -- Nature. 2009 Aug 20;460(7258):1011-5. doi: 10.1038/nature08211. Epub 2009 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19587683" target="_blank"〉PubMed〈/a〉
    Keywords: Asian Continental Ancestry Group/*genetics ; Chromosomes, Artificial, Bacterial/genetics ; Comparative Genomic Hybridization ; Computational Biology ; Genome, Human/*genetics ; Humans ; INDEL Mutation/genetics ; Korea ; Oligonucleotide Array Sequence Analysis ; Polymorphism, Single Nucleotide/genetics ; Sequence Analysis, DNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-13
    Description: Recent advances in whole-genome sequencing have brought the vision of personal genomics and genomic medicine closer to reality. However, current methods lack clinical accuracy and the ability to describe the context (haplotypes) in which genome variants co-occur in a cost-effective manner. Here we describe a low-cost DNA sequencing and haplotyping process, long fragment read (LFR) technology, which is similar to sequencing long single DNA molecules without cloning or separation of metaphase chromosomes. In this study, ten LFR libraries were made using only approximately 100 picograms of human DNA per sample. Up to 97% of the heterozygous single nucleotide variants were assembled into long haplotype contigs. Removal of false positive single nucleotide variants not phased by multiple LFR haplotypes resulted in a final genome error rate of 1 in 10 megabases. Cost-effective and accurate genome sequencing and haplotyping from 10-20 human cells, as demonstrated here, will enable comprehensive genetic studies and diverse clinical applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397394/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397394/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peters, Brock A -- Kermani, Bahram G -- Sparks, Andrew B -- Alferov, Oleg -- Hong, Peter -- Alexeev, Andrei -- Jiang, Yuan -- Dahl, Fredrik -- Tang, Y Tom -- Haas, Juergen -- Robasky, Kimberly -- Zaranek, Alexander Wait -- Lee, Je-Hyuk -- Ball, Madeleine Price -- Peterson, Joseph E -- Perazich, Helena -- Yeung, George -- Liu, Jia -- Chen, Linsu -- Kennemer, Michael I -- Pothuraju, Kaliprasad -- Konvicka, Karel -- Tsoupko-Sitnikov, Mike -- Pant, Krishna P -- Ebert, Jessica C -- Nilsen, Geoffrey B -- Baccash, Jonathan -- Halpern, Aaron L -- Church, George M -- Drmanac, Radoje -- P50 HG005550/HG/NHGRI NIH HHS/ -- P50HG005550/HG/NHGRI NIH HHS/ -- England -- Nature. 2012 Jul 11;487(7406):190-5. doi: 10.1038/nature11236.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Complete Genomics, Inc., 2071 Stierlin Court, Mountain View, California 94043, USA. bpeters@completegenomics.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22785314" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cell Line ; Female ; Gene Silencing ; Genetic Variation ; *Genome, Human ; Genomics/*methods ; Haplotypes ; Humans ; Mutation ; Reproducibility of Results ; Sequence Analysis, DNA/economics/*methods/standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-11-07
    Description: Genome sequencing of large numbers of individuals promises to advance the understanding, treatment, and prevention of human diseases, among other applications. We describe a genome sequencing platform that achieves efficient imaging and low reagent consumption with combinatorial probe anchor ligation chemistry to independently assay each base from patterned nanoarrays of self-assembling DNA nanoballs. We sequenced three human genomes with this platform, generating an average of 45- to 87-fold coverage per genome and identifying 3.2 to 4.5 million sequence variants per genome. Validation of one genome data set demonstrates a sequence accuracy of about 1 false variant per 100 kilobases. The high accuracy, affordable cost of $4400 for sequencing consumables, and scalability of this platform enable complete human genome sequencing for the detection of rare variants in large-scale genetic studies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drmanac, Radoje -- Sparks, Andrew B -- Callow, Matthew J -- Halpern, Aaron L -- Burns, Norman L -- Kermani, Bahram G -- Carnevali, Paolo -- Nazarenko, Igor -- Nilsen, Geoffrey B -- Yeung, George -- Dahl, Fredrik -- Fernandez, Andres -- Staker, Bryan -- Pant, Krishna P -- Baccash, Jonathan -- Borcherding, Adam P -- Brownley, Anushka -- Cedeno, Ryan -- Chen, Linsu -- Chernikoff, Dan -- Cheung, Alex -- Chirita, Razvan -- Curson, Benjamin -- Ebert, Jessica C -- Hacker, Coleen R -- Hartlage, Robert -- Hauser, Brian -- Huang, Steve -- Jiang, Yuan -- Karpinchyk, Vitali -- Koenig, Mark -- Kong, Calvin -- Landers, Tom -- Le, Catherine -- Liu, Jia -- McBride, Celeste E -- Morenzoni, Matt -- Morey, Robert E -- Mutch, Karl -- Perazich, Helena -- Perry, Kimberly -- Peters, Brock A -- Peterson, Joe -- Pethiyagoda, Charit L -- Pothuraju, Kaliprasad -- Richter, Claudia -- Rosenbaum, Abraham M -- Roy, Shaunak -- Shafto, Jay -- Sharanhovich, Uladzislau -- Shannon, Karen W -- Sheppy, Conrad G -- Sun, Michel -- Thakuria, Joseph V -- Tran, Anne -- Vu, Dylan -- Zaranek, Alexander Wait -- Wu, Xiaodi -- Drmanac, Snezana -- Oliphant, Arnold R -- Banyai, William C -- Martin, Bruce -- Ballinger, Dennis G -- Church, George M -- Reid, Clifford A -- New York, N.Y. -- Science. 2010 Jan 1;327(5961):78-81. doi: 10.1126/science.1181498. Epub 2009 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Complete Genomics, Inc., 2071 Stierlin Court, Mountain View, CA 94043, USA. rdrmanac@completegenomics.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19892942" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Computational Biology ; Costs and Cost Analysis ; DNA/*chemistry/genetics ; Databases, Nucleic Acid ; *Genome, Human ; Genomic Library ; Genotype ; Haplotypes ; Human Genome Project ; Humans ; Male ; *Microarray Analysis ; Nanostructures ; Nanotechnology ; Nucleic Acid Amplification Techniques ; Polymorphism, Single Nucleotide ; Sequence Analysis, DNA/economics/instrumentation/*methods/standards ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-07-25
    Description: Rapid advances in DNA sequencing promise to enable new diagnostics and individualized therapies. Achieving personalized medicine, however, will require extensive research on highly reidentifiable, integrated datasets of genomic and health information. To assist with this, participants in the Personal Genome Project choose to forgo privacy via our institutional review board- approved “open consent” process. The contribution of public data and samples facilitates both scientific discovery and standardization of methods. We present our findings after enrollment of more than 1,800 participants, including whole-genome sequencing of 10 pilot participant genomes (the PGP-10). We introduce the Genome-Environment-Trait Evidence (GET-Evidence) system. This tool automatically processes genomes and prioritizes both published and novel variants for interpretation. In the process of reviewing the presumed healthy PGP-10 genomes, we find numerous literature references implying serious disease. Although it is sometimes impossible to rule out a late-onset effect, stringent evidence requirements can address the high rate of incidental findings. To that end we develop a peer production system for recording and organizing variant evaluations according to standard evidence guidelines, creating a public forum for reaching consensus on interpretation of clinically relevant variants. Genome analysis becomes a two-step process: using a prioritized list to record variant evaluations, then automatically sorting reviewed variants using these annotations. Genome data, health and trait information, participant samples, and variant interpretations are all shared in the public domain—we invite others to review our results using our participant samples and contribute to our interpretations. We offer our public resource and methods to further personalized medical research.
    Keywords: Inaugural Articles
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...