ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-12-08
    Description: To test the hypothesis that the cultivated peanut species possesses almost no molecular variability, we sequenced a diverse panel of 22 Arachis accessions representing Arachis hypogaea botanical classes, A-, B-, and K- genome diploids, a synthetic amphidiploid, and a tetraploid wild species. RNASeq was performed on pools of three tissues, and de novo assembly was performed. Realignment of individual accession reads to transcripts of the cultivar OLin identified 306,820 biallelic SNPs. Among 10 naturally occurring tetraploid accessions, 40,382 unique homozygous SNPs were identified in 14,719 contigs. In eight diploid accessions, 291,115 unique SNPs were identified in 26,320 contigs. The average SNP rate among the 10 cultivated tetraploids was 0.5, and among eight diploids was 9.2 per 1000 bp. Diversity analysis indicated grouping of diploids according to genome classification, and cultivated tetraploids by subspecies. Cluster analysis of variants indicated that sequences of B genome species were the most similar to the tetraploids, and the next closest diploid accession belonged to the A genome species. A subset of 66 SNPs selected from the dataset was validated; of 782 SNP calls, 636 (81.32%) were confirmed using an allele-specific discrimination assay. We conclude that substantial genetic variability exists among wild species. Additionally, significant but lesser variability at the molecular level occurs among accessions of the cultivated species. This survey is the first to report significant SNP level diversity among transcripts, and may explain some of the phenotypic differences observed in germplasm surveys. Understanding SNP variants in the Arachis accessions will benefit in developing markers for selection.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-04-30
    Description: Monozygotic or 'identical' twins have been widely studied to dissect the relative contributions of genetics and environment in human diseases. In multiple sclerosis (MS), an autoimmune demyelinating disease and common cause of neurodegeneration and disability in young adults, disease discordance in monozygotic twins has been interpreted to indicate environmental importance in its pathogenesis. However, genetic and epigenetic differences between monozygotic twins have been described, challenging the accepted experimental model in disambiguating the effects of nature and nurture. Here we report the genome sequences of one MS-discordant monozygotic twin pair, and messenger RNA transcriptome and epigenome sequences of CD4(+) lymphocytes from three MS-discordant, monozygotic twin pairs. No reproducible differences were detected between co-twins among approximately 3.6 million single nucleotide polymorphisms (SNPs) or approximately 0.2 million insertion-deletion polymorphisms. Nor were any reproducible differences observed between siblings of the three twin pairs in HLA haplotypes, confirmed MS-susceptibility SNPs, copy number variations, mRNA and genomic SNP and insertion-deletion genotypes, or the expression of approximately 19,000 genes in CD4(+) T cells. Only 2 to 176 differences in the methylation of approximately 2 million CpG dinucleotides were detected between siblings of the three twin pairs, in contrast to approximately 800 methylation differences between T cells of unrelated individuals and several thousand differences between tissues or between normal and cancerous tissues. In the first systematic effort to estimate sequence variation among monozygotic co-twins, we did not find evidence for genetic, epigenetic or transcriptome differences that explained disease discordance. These are the first, to our knowledge, female, twin and autoimmune disease individual genome sequences reported.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862593/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862593/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baranzini, Sergio E -- Mudge, Joann -- van Velkinburgh, Jennifer C -- Khankhanian, Pouya -- Khrebtukova, Irina -- Miller, Neil A -- Zhang, Lu -- Farmer, Andrew D -- Bell, Callum J -- Kim, Ryan W -- May, Gregory D -- Woodward, Jimmy E -- Caillier, Stacy J -- McElroy, Joseph P -- Gomez, Refujia -- Pando, Marcelo J -- Clendenen, Leonda E -- Ganusova, Elena E -- Schilkey, Faye D -- Ramaraj, Thiruvarangan -- Khan, Omar A -- Huntley, Jim J -- Luo, Shujun -- Kwok, Pui-Yan -- Wu, Thomas D -- Schroth, Gary P -- Oksenberg, Jorge R -- Hauser, Stephen L -- Kingsmore, Stephen F -- P20 RR016480/RR/NCRR NIH HHS/ -- P20 RR016480-09/RR/NCRR NIH HHS/ -- R01 NS026799/NS/NINDS NIH HHS/ -- R01 NS026799-20A1/NS/NINDS NIH HHS/ -- R01 NS046297/NS/NINDS NIH HHS/ -- R01 NS046297-06/NS/NINDS NIH HHS/ -- R01NS26799/NS/NINDS NIH HHS/ -- R01NS46297/NS/NINDS NIH HHS/ -- RR016480/RR/NCRR NIH HHS/ -- U01 AI066569/AI/NIAID NIH HHS/ -- U01 AI066569-05/AI/NIAID NIH HHS/ -- U19 HD077693/HD/NICHD NIH HHS/ -- England -- Nature. 2010 Apr 29;464(7293):1351-6. doi: 10.1038/nature08990.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of California at San Francisco, San Francisco, California 94143, USA. sebaran@cgl.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20428171" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Allelic Imbalance/genetics ; Breast/metabolism ; Breast Neoplasms/genetics ; CD4-Positive T-Lymphocytes/metabolism ; Case-Control Studies ; CpG Islands/genetics ; DNA Copy Number Variations/genetics ; DNA Methylation/genetics ; Epigenesis, Genetic/*genetics ; Female ; Genetic Predisposition to Disease/genetics ; Genome, Human/*genetics ; Haplotypes/genetics ; Heterozygote ; Humans ; INDEL Mutation/genetics ; Lung/metabolism ; Lung Neoplasms/genetics ; Male ; Multiple Sclerosis/*genetics ; Polymorphism, Genetic/genetics ; Quantitative Trait Loci/genetics ; RNA, Messenger/analysis/*genetics/metabolism ; Twins, Monozygotic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-07-10
    Description: Recent advances in sequencing technologies have initiated an era of personal genome sequences. To date, human genome sequences have been reported for individuals with ancestry in three distinct geographical regions: a Yoruba African, two individuals of northwest European origin, and a person from China. Here we provide a highly annotated, whole-genome sequence for a Korean individual, known as AK1. The genome of AK1 was determined by an exacting, combined approach that included whole-genome shotgun sequencing (27.8x coverage), targeted bacterial artificial chromosome sequencing, and high-resolution comparative genomic hybridization using custom microarrays featuring more than 24 million probes. Alignment to the NCBI reference, a composite of several ethnic clades, disclosed nearly 3.45 million single nucleotide polymorphisms (SNPs), including 10,162 non-synonymous SNPs, and 170,202 deletion or insertion polymorphisms (indels). SNP and indel densities were strongly correlated genome-wide. Applying very conservative criteria yielded highly reliable copy number variants for clinical considerations. Potential medical phenotypes were annotated for non-synonymous SNPs, coding domain indels, and structural variants. The integration of several human whole-genome sequences derived from several ethnic groups will assist in understanding genetic ancestry, migration patterns and population bottlenecks.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860965/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860965/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jong-Il -- Ju, Young Seok -- Park, Hansoo -- Kim, Sheehyun -- Lee, Seonwook -- Yi, Jae-Hyuk -- Mudge, Joann -- Miller, Neil A -- Hong, Dongwan -- Bell, Callum J -- Kim, Hye-Sun -- Chung, In-Soon -- Lee, Woo-Chung -- Lee, Ji-Sun -- Seo, Seung-Hyun -- Yun, Ji-Young -- Woo, Hyun Nyun -- Lee, Heewook -- Suh, Dongwhan -- Lee, Seungbok -- Kim, Hyun-Jin -- Yavartanoo, Maryam -- Kwak, Minhye -- Zheng, Ying -- Lee, Mi Kyeong -- Park, Hyunjun -- Kim, Jeong Yeon -- Gokcumen, Omer -- Mills, Ryan E -- Zaranek, Alexander Wait -- Thakuria, Joseph -- Wu, Xiaodi -- Kim, Ryan W -- Huntley, Jim J -- Luo, Shujun -- Schroth, Gary P -- Wu, Thomas D -- Kim, HyeRan -- Yang, Kap-Seok -- Park, Woong-Yang -- Kim, Hyungtae -- Church, George M -- Lee, Charles -- Kingsmore, Stephen F -- Seo, Jeong-Sun -- HG004221/HG/NHGRI NIH HHS/ -- P20 RR016480/RR/NCRR NIH HHS/ -- P20 RR016480-08/RR/NCRR NIH HHS/ -- RR016480/RR/NCRR NIH HHS/ -- U01 AI066569/AI/NIAID NIH HHS/ -- U01 AI066569-04/AI/NIAID NIH HHS/ -- U19 HD077693/HD/NICHD NIH HHS/ -- England -- Nature. 2009 Aug 20;460(7258):1011-5. doi: 10.1038/nature08211. Epub 2009 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 110-799, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19587683" target="_blank"〉PubMed〈/a〉
    Keywords: Asian Continental Ancestry Group/*genetics ; Chromosomes, Artificial, Bacterial/genetics ; Comparative Genomic Hybridization ; Computational Biology ; Genome, Human/*genetics ; Humans ; INDEL Mutation/genetics ; Korea ; Oligonucleotide Array Sequence Analysis ; Polymorphism, Single Nucleotide/genetics ; Sequence Analysis, DNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-11-18
    Description: Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing approximately 94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272368/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272368/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Young, Nevin D -- Debelle, Frederic -- Oldroyd, Giles E D -- Geurts, Rene -- Cannon, Steven B -- Udvardi, Michael K -- Benedito, Vagner A -- Mayer, Klaus F X -- Gouzy, Jerome -- Schoof, Heiko -- Van de Peer, Yves -- Proost, Sebastian -- Cook, Douglas R -- Meyers, Blake C -- Spannagl, Manuel -- Cheung, Foo -- De Mita, Stephane -- Krishnakumar, Vivek -- Gundlach, Heidrun -- Zhou, Shiguo -- Mudge, Joann -- Bharti, Arvind K -- Murray, Jeremy D -- Naoumkina, Marina A -- Rosen, Benjamin -- Silverstein, Kevin A T -- Tang, Haibao -- Rombauts, Stephane -- Zhao, Patrick X -- Zhou, Peng -- Barbe, Valerie -- Bardou, Philippe -- Bechner, Michael -- Bellec, Arnaud -- Berger, Anne -- Berges, Helene -- Bidwell, Shelby -- Bisseling, Ton -- Choisne, Nathalie -- Couloux, Arnaud -- Denny, Roxanne -- Deshpande, Shweta -- Dai, Xinbin -- Doyle, Jeff J -- Dudez, Anne-Marie -- Farmer, Andrew D -- Fouteau, Stephanie -- Franken, Carolien -- Gibelin, Chrystel -- Gish, John -- Goldstein, Steven -- Gonzalez, Alvaro J -- Green, Pamela J -- Hallab, Asis -- Hartog, Marijke -- Hua, Axin -- Humphray, Sean J -- Jeong, Dong-Hoon -- Jing, Yi -- Jocker, Anika -- Kenton, Steve M -- Kim, Dong-Jin -- Klee, Kathrin -- Lai, Hongshing -- Lang, Chunting -- Lin, Shaoping -- Macmil, Simone L -- Magdelenat, Ghislaine -- Matthews, Lucy -- McCorrison, Jamison -- Monaghan, Erin L -- Mun, Jeong-Hwan -- Najar, Fares Z -- Nicholson, Christine -- Noirot, Celine -- O'Bleness, Majesta -- Paule, Charles R -- Poulain, Julie -- Prion, Florent -- Qin, Baifang -- Qu, Chunmei -- Retzel, Ernest F -- Riddle, Claire -- Sallet, Erika -- Samain, Sylvie -- Samson, Nicolas -- Sanders, Iryna -- Saurat, Olivier -- Scarpelli, Claude -- Schiex, Thomas -- Segurens, Beatrice -- Severin, Andrew J -- Sherrier, D Janine -- Shi, Ruihua -- Sims, Sarah -- Singer, Susan R -- Sinharoy, Senjuti -- Sterck, Lieven -- Viollet, Agnes -- Wang, Bing-Bing -- Wang, Keqin -- Wang, Mingyi -- Wang, Xiaohong -- Warfsmann, Jens -- Weissenbach, Jean -- White, Doug D -- White, Jim D -- Wiley, Graham B -- Wincker, Patrick -- Xing, Yanbo -- Yang, Limei -- Yao, Ziyun -- Ying, Fu -- Zhai, Jixian -- Zhou, Liping -- Zuber, Antoine -- Denarie, Jean -- Dixon, Richard A -- May, Gregory D -- Schwartz, David C -- Rogers, Jane -- Quetier, Francis -- Town, Christopher D -- Roe, Bruce A -- BB/G023832/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/B/11524/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2011 Nov 16;480(7378):520-4. doi: 10.1038/nature10625.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology, University of Minnesota, St Paul, Minnesota 55108, USA. neviny@umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22089132" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; *Genome, Plant ; Medicago truncatula/*genetics/*microbiology ; Molecular Sequence Data ; Nitrogen Fixation/genetics ; Rhizobium/*physiology ; Soybeans/genetics ; *Symbiosis ; Synteny ; Vitis/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford [u.a.] : International Union of Crystallography (IUCr)
    Acta crystallographica 53 (1997), S. 415-416 
    ISSN: 1600-5759
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1435-0653
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2242
    Keywords: Key words Bacterial artificial chromosome ; Simple sequence repeats ; Microsatellites ; Soybean cyst nematode ; Genetic mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Simple sequence repeats (SSRs) are versatile DNA markers that are readily assayed and highly informative. Unfortunately, non-targeted approaches to SSR development often leave large genomic regions without SSR markers. In some cases these same genomic regions are already populated by other types of DNA markers, especially restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNAs (RAPDs), and amplified fragment length polymorphisms (AFLPs). To identify SSR markers in such regions, bacterial artificial chromosome (BAC) clones can be used as intermediaries. First, one or more BAC clones in a region of interest are identified through the use of an existing DNA marker. BAC clones uncovered in this initial step are then used to create a small insert DNA library that can be screened for the presence of SSR-containing clones. Because BAC inserts are often 100-kb pairs or more in size, most contain one or more SSRs. This strategy was applied to two regions of the soybean genome near genes that condition resistance to the soybean cyst nematode on molecular linkage groups G and A2. This targeted approach to identifying new DNA markers can readily be extended to other types of DNA markers, including single nucleotide polymorphisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2242
    Keywords: Key words Simple sequence repeats ; Microsatellites ; Soybean cyst nematode ; Genetic mapping ; Marker-assisted selection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The soybean cyst nematode (SCN) (Heterodera glycines Inchinoe) is the most economically significant soybean pest. The principal strategy to reduce or eliminate damage from this pest is the use of resistant cultivars. Identifying resistant segregants in a breeding program is a difficult and expensive process which is complicated by the oligogenic nature of the resistance and genetic variability in the pathogen. Fortunately, resistance at one SCN-resistance locus, rhg1, is generally accepted as a necessity for the development of resistant genotypes using any source of resistance and when challenged by any SCN race. Thus, the development of SCN resistant cultivars would be expedited if an effective and rapid system were available to identify breeding lines carrying a resistance allele at the rhg1 locus. In this study we report two simple sequence repeat (SSR) or microsatellite loci that cosegregate and map 0.4 cM from rhg1. Allelic variation at the first of these loci, BARC-Satt309, distinguished most, if not all, SCN-susceptible genotypes from those carrying resistance at rhg1 derived from the important SCN-resistance sources ’Peking’, PI 437654, and PI 90763. BARC-Satt309 was also effective in distinguishing SCN resistance sources PI 88788 and PI 209332 from many, but not all, susceptible genotypes. BARC-Satt309 cannot be used in marker-assisted selection in populations developed from typical southern US cultivars crossed with the important resistance sources PI 88788 or PI 209332 because these genotypes all carry the identical allele at the BARC-Satt309 locus. A second SSR locus, BARC-Sat_168, was developed from a bacterial artificial chromosome (BAC) clone that was identified using the primers to BARC-Satt309. BARC-Sat_168 distinguished PI 88788 and PI 209332 from southern US cultivars such as ’Lee’, ’Bragg’ and ’Essex’. Both BARC-Satt309 and BARC-Sat_168 were used to assay lines from SCN-susceptible×SCN-resistant crosses and proved to be highly effective in identifying lines carrying rhg1 resistance from those carrying the allele for SCN susceptibility at the rhg1 locus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2242
    Keywords: Key words Chromosome walking ; Gene mapping ; Glycine max ; Heterodera glycines ; High-molecular-weight DNA ; Positional cloning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We constructed a bacterial artificial chromosome (BAC) library for soybean (Glycine max) consisting of approximately 30 000 clones with an average insert size of 120 kilobase pairs. The library was successfully screened with restriction fragment length polymorphism (RFLP) and microsatellite markers tightly linked to a major resistance gene for the cyst nematode, Heterodera glycines. Since many soybean RFLPs hybridize to duplicate loci, BACs homologous to duplicate RFLP loci were distinguished by digestion with the restriction enzyme originally used to map the RFLP, followed by a comparison of the hybridizing fragments. Linkage mapping of BAC clones identified with markers linked to the cyst nematode resistance gene demonstrated that these clones were located at the expected chromosomal positions and that there were no indications of chimeras within the genomic inserts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-10-15
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...