ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-01-31
    Description: Schwann cells develop from multipotent neural crest cells and form myelin sheaths around axons that allow rapid transmission of action potentials. Neuregulin signaling through the ErbB receptor regulates Schwann cell development; however, the downstream pathways are not fully defined. We find that mice lacking calcineurin B1 in the neural crest have defects in Schwann cell differentiation and myelination. Neuregulin addition to Schwann cell precursors initiates an increase in cytoplasmic Ca2+, which activates calcineurin and the downstream transcription factors NFATc3 and c4. Purification of NFAT protein complexes shows that Sox10 is an NFAT nuclear partner and synergizes with NFATc4 to activate Krox20, which regulates genes necessary for myelination. Our studies demonstrate that calcineurin and NFAT are essential for neuregulin and ErbB signaling, neural crest diversification, and differentiation of Schwann cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790385/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790385/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kao, Shih-Chu -- Wu, Hai -- Xie, Jianming -- Chang, Ching-Pin -- Ranish, Jeffrey A -- Graef, Isabella A -- Crabtree, Gerald R -- AI60037/AI/NIAID NIH HHS/ -- HD55391/HD/NICHD NIH HHS/ -- NS046789/NS/NINDS NIH HHS/ -- R01 AI060037/AI/NIAID NIH HHS/ -- R01 AI060037-01/AI/NIAID NIH HHS/ -- R01 AI060037-02/AI/NIAID NIH HHS/ -- R01 AI060037-03/AI/NIAID NIH HHS/ -- R01 AI060037-04/AI/NIAID NIH HHS/ -- R01 AI060037-05/AI/NIAID NIH HHS/ -- R01 HD055391/HD/NICHD NIH HHS/ -- R01 NS046789/NS/NINDS NIH HHS/ -- R01 NS046789-01/NS/NINDS NIH HHS/ -- R01 NS046789-02/NS/NINDS NIH HHS/ -- R01 NS046789-03/NS/NINDS NIH HHS/ -- R01 NS046789-04/NS/NINDS NIH HHS/ -- R01 NS046789-05/NS/NINDS NIH HHS/ -- R21 NS061702/NS/NINDS NIH HHS/ -- R21 NS061702-01/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Jan 30;323(5914):651-4. doi: 10.1126/science.1166562.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19179536" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/*metabolism ; Calcium/metabolism ; Cell Differentiation ; Cell Line ; Coculture Techniques ; Early Growth Response Protein 2/metabolism ; Ganglia, Spinal/cytology ; Mice ; Myelin Sheath/physiology ; NFATC Transcription Factors/*metabolism ; Neural Crest/cytology/metabolism ; Neuregulins/*metabolism ; Phosphorylation ; Receptor, ErbB-2/metabolism ; Receptor, ErbB-3 ; SOXE Transcription Factors/metabolism ; Schwann Cells/*cytology/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-15
    Description: The role of long noncoding RNA (lncRNA) in adult hearts is unknown; also unclear is how lncRNA modulates nucleosome remodelling. An estimated 70% of mouse genes undergo antisense transcription, including myosin heavy chain 7 (Myh7), which encodes molecular motor proteins for heart contraction. Here we identify a cluster of lncRNA transcripts from Myh7 loci and demonstrate a new lncRNA-chromatin mechanism for heart failure. In mice, these transcripts, which we named myosin heavy-chain-associated RNA transcripts (Myheart, or Mhrt), are cardiac-specific and abundant in adult hearts. Pathological stress activates the Brg1-Hdac-Parp chromatin repressor complex to inhibit Mhrt transcription in the heart. Such stress-induced Mhrt repression is essential for cardiomyopathy to develop: restoring Mhrt to the pre-stress level protects the heart from hypertrophy and failure. Mhrt antagonizes the function of Brg1, a chromatin-remodelling factor that is activated by stress to trigger aberrant gene expression and cardiac myopathy. Mhrt prevents Brg1 from recognizing its genomic DNA targets, thus inhibiting chromatin targeting and gene regulation by Brg1. It does so by binding to the helicase domain of Brg1, a domain that is crucial for tethering Brg1 to chromatinized DNA targets. Brg1 helicase has dual nucleic-acid-binding specificities: it is capable of binding lncRNA (Mhrt) and chromatinized--but not naked--DNA. This dual-binding feature of helicase enables a competitive inhibition mechanism by which Mhrt sequesters Brg1 from its genomic DNA targets to prevent chromatin remodelling. A Mhrt-Brg1 feedback circuit is thus crucial for heart function. Human MHRT also originates from MYH7 loci and is repressed in various types of myopathic hearts, suggesting a conserved lncRNA mechanism in human cardiomyopathy. Our studies identify a cardioprotective lncRNA, define a new targeting mechanism for ATP-dependent chromatin-remodelling factors, and establish a new paradigm for lncRNA-chromatin interaction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184960/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184960/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Pei -- Li, Wei -- Lin, Chiou-Hong -- Yang, Jin -- Shang, Ching -- Nurnberg, Sylvia T -- Jin, Kevin Kai -- Xu, Weihong -- Lin, Chieh-Yu -- Lin, Chien-Jung -- Xiong, Yiqin -- Chien, Huan-Chieh -- Zhou, Bin -- Ashley, Euan -- Bernstein, Daniel -- Chen, Peng-Sheng -- Chen, Huei-Sheng Vincent -- Quertermous, Thomas -- Chang, Ching-Pin -- HL105194/HL/NHLBI NIH HHS/ -- HL109512/HL/NHLBI NIH HHS/ -- HL111770/HL/NHLBI NIH HHS/ -- HL116997/HL/NHLBI NIH HHS/ -- HL118087/HL/NHLBI NIH HHS/ -- HL121197/HL/NHLBI NIH HHS/ -- HL71140/HL/NHLBI NIH HHS/ -- HL78931/HL/NHLBI NIH HHS/ -- R01 HL111770/HL/NHLBI NIH HHS/ -- R01 HL116997/HL/NHLBI NIH HHS/ -- R01 HL121197/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Oct 2;514(7520):102-6. doi: 10.1038/nature13596. Epub 2014 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [2] Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA [2]. ; Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA. ; Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, 1301 Morris Park Avenue, Price Center 420, Bronx, New York 10461, USA. ; Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Del E. Webb Neuroscience, Aging &Stem Cell Research Center, Sanford/Burnham Medical Research Institute, La Jolla, California 92037, USA. ; 1] Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [2] Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [3] Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119045" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cardiac Myosins/genetics ; Cardiomegaly/*genetics/*pathology/prevention & control ; Cardiomyopathies/genetics/pathology/prevention & control ; Chromatin/genetics/metabolism ; Chromatin Assembly and Disassembly ; DNA Helicases/antagonists & inhibitors/chemistry/genetics/metabolism ; Feedback, Physiological ; Heart Failure/genetics/pathology/prevention & control ; Histone Deacetylases/metabolism ; Humans ; Mice ; Myocardium/metabolism/pathology ; Myosin Heavy Chains/*genetics ; Nuclear Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Organ Specificity ; Poly(ADP-ribose) Polymerases/metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA, Long Noncoding/antagonists & inhibitors/*genetics/metabolism ; Transcription Factors/antagonists & inhibitors/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-03
    Description: Cardiac hypertrophy and failure are characterized by transcriptional reprogramming of gene expression. Adult cardiomyocytes in mice primarily express alpha-myosin heavy chain (alpha-MHC, also known as Myh6), whereas embryonic cardiomyocytes express beta-MHC (also known as Myh7). Cardiac stress triggers adult hearts to undergo hypertrophy and a shift from alpha-MHC to fetal beta-MHC expression. Here we show that Brg1, a chromatin-remodelling protein, has a critical role in regulating cardiac growth, differentiation and gene expression. In embryos, Brg1 promotes myocyte proliferation by maintaining Bmp10 and suppressing p57(kip2) expression. It preserves fetal cardiac differentiation by interacting with histone deacetylase (HDAC) and poly (ADP ribose) polymerase (PARP) to repress alpha-MHC and activate beta-MHC. In adults, Brg1 (also known as Smarca4) is turned off in cardiomyocytes. It is reactivated by cardiac stresses and forms a complex with its embryonic partners, HDAC and PARP, to induce a pathological alpha-MHC to beta-MHC shift. Preventing Brg1 re-expression decreases hypertrophy and reverses this MHC switch. BRG1 is activated in certain patients with hypertrophic cardiomyopathy, its level correlating with disease severity and MHC changes. Our studies show that Brg1 maintains cardiomyocytes in an embryonic state, and demonstrate an epigenetic mechanism by which three classes of chromatin-modifying factors-Brg1, HDAC and PARP-cooperate to control developmental and pathological gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898892/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898892/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hang, Calvin T -- Yang, Jin -- Han, Pei -- Cheng, Hsiu-Ling -- Shang, Ching -- Ashley, Euan -- Zhou, Bin -- Chang, Ching-Pin -- R01 HL085345/HL/NHLBI NIH HHS/ -- R01 HL085345-03S1/HL/NHLBI NIH HHS/ -- R01 HL085345-04/HL/NHLBI NIH HHS/ -- T32 CA009302/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jul 1;466(7302):62-7. doi: 10.1038/nature09130.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20596014" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cardiomegaly/*genetics/*metabolism/pathology ; Cell Differentiation ; Cell Proliferation ; Chromatin/*genetics ; DNA Helicases/deficiency/genetics/*metabolism ; Embryo Loss/genetics ; Embryo, Mammalian/metabolism ; Gene Expression Regulation, Developmental ; Histone Deacetylases/metabolism ; Humans ; Mice ; Myocardium/cytology/*metabolism/pathology ; Myosin Heavy Chains/genetics/metabolism ; Nuclear Proteins/deficiency/genetics/*metabolism ; Poly(ADP-ribose) Polymerases/metabolism ; Transcription Factors/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-15
    Description: CHARGE syndrome is a multiple anomaly disorder in which patients present with a variety of phenotypes, including ocular coloboma, heart defects, choanal atresia, retarded growth and development, genitourinary hypoplasia and ear abnormalities. Despite 70-90% of CHARGE syndrome cases resulting from mutations in the gene CHD7, which encodes an ATP-dependent chromatin remodeller, the pathways underlying the diverse phenotypes remain poorly understood. Surprisingly, our studies of a knock-in mutant mouse strain that expresses a stabilized and transcriptionally dead variant of the tumour-suppressor protein p53 (p53(25,26,53,54)), along with a wild-type allele of p53 (also known as Trp53), revealed late-gestational embryonic lethality associated with a host of phenotypes that are characteristic of CHARGE syndrome, including coloboma, inner and outer ear malformations, heart outflow tract defects and craniofacial defects. We found that the p53(25,26,53,54) mutant protein stabilized and hyperactivated wild-type p53, which then inappropriately induced its target genes and triggered cell-cycle arrest or apoptosis during development. Importantly, these phenotypes were only observed with a wild-type p53 allele, as p53(25,26,53,54)(/-) embryos were fully viable. Furthermore, we found that CHD7 can bind to the p53 promoter, thereby negatively regulating p53 expression, and that CHD7 loss in mouse neural crest cells or samples from patients with CHARGE syndrome results in p53 activation. Strikingly, we found that p53 heterozygosity partially rescued the phenotypes in Chd7-null mouse embryos, demonstrating that p53 contributes to the phenotypes that result from CHD7 loss. Thus, inappropriate p53 activation during development can promote CHARGE phenotypes, supporting the idea that p53 has a critical role in developmental syndromes and providing important insight into the mechanisms underlying CHARGE syndrome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192026/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192026/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Nostrand, Jeanine L -- Brady, Colleen A -- Jung, Heiyoun -- Fuentes, Daniel R -- Kozak, Margaret M -- Johnson, Thomas M -- Lin, Chieh-Yu -- Lin, Chien-Jung -- Swiderski, Donald L -- Vogel, Hannes -- Bernstein, Jonathan A -- Attie-Bitach, Tania -- Chang, Ching-Pin -- Wysocka, Joanna -- Martin, Donna M -- Attardi, Laura D -- 1F31CA167917-01/CA/NCI NIH HHS/ -- F31 CA167917/CA/NCI NIH HHS/ -- R01 CA140875/CA/NCI NIH HHS/ -- R01 DC009410/DC/NIDCD NIH HHS/ -- R01 GM095555/GM/NIGMS NIH HHS/ -- R01 HL118087/HL/NHLBI NIH HHS/ -- R01HL121197/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Oct 9;514(7521):228-32. doi: 10.1038/nature13585. Epub 2014 Aug 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA (C.A.B.); Department of Medicine, University of Central Florida, Orlando, Florida 32827, USA (M.M.K.); Department of Emergency Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA (T.M.J.). ; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Otolaryngology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ; Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Departement de Genetique, Hopital Necker-Enfants Malades, APHP, 75015 Paris, France [2] Unite INSERM U1163, Universite Paris Descartes-Sorbonne Paris Cite, Institut Imagine, 75015 Paris, France. ; Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; 1] Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA [2] Department of Human Genetics, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ; 1] Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119037" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple/genetics/*metabolism ; Alleles ; Animals ; Apoptosis/genetics ; CHARGE Syndrome/*genetics/*metabolism ; Cell Cycle Checkpoints/genetics ; Craniofacial Abnormalities/genetics/metabolism ; DNA-Binding Proteins/deficiency/genetics/metabolism ; Ear/abnormalities ; Embryo, Mammalian/abnormalities/metabolism ; Female ; Fibroblasts ; Gene Deletion ; Heterozygote ; Humans ; Male ; Mice ; Mutant Proteins/metabolism ; *Phenotype ; Promoter Regions, Genetic/genetics ; Tumor Suppressor Protein p53/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-05-20
    Description: A chimeric mouse-human Fab protein that binds specifically to the human carcinoma cell line C3347 has been expressed and secreted from Escherichia coli. This molecule, which contains functionally assembled kappa and Fd proteins, binds as effectively to sites on the surface of C3347 cells as Fab fragments prepared proteolytically from whole chimeric or mouse antibody. The production in Escherichia coli of foreign heterodimeric protein reagents, such as Fab, should prove useful in the management of human disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Better, M -- Chang, C P -- Robinson, R R -- Horwitz, A H -- New York, N.Y. -- Science. 1988 May 20;240(4855):1041-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉International Genetic Engineering Inc. (INGENE), Santa Monica, CA 90404.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3285471" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigen-Antibody Complex/immunology ; Antigens, Surface/immunology ; Base Sequence ; Cell Line ; *Chimera ; Escherichia coli/*genetics ; Genes, Immunoglobulin ; Humans ; Immunoglobulin Fab Fragments/*genetics/immunology ; Mice ; Molecular Sequence Data ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...