ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-07-06
    Description: An assay was developed to study plant receptor kinase activation and signaling mechanisms. The extracellular leucine-rich repeat (LRR) and transmembrane domains of the Arabidopsis receptor kinase BRI1, which is implicated in brassinosteroid signaling, were fused to the serine/threonine kinase domain of XA21, the rice disease resistance receptor. The chimeric receptor initiates plant defense responses in rice cells upon treatment with brassinosteroids. These results, which indicate that the extracellular domain of BRI1 perceives brassinosteroids, suggest a general signaling mechanism for the LRR receptor kinases of plants. This system should allow the discovery of ligands for the LRR kinases, the largest group of plant receptor kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Z -- Wang, Z Y -- Li, J -- Zhu, Q -- Lamb, C -- Ronald, P -- Chory, J -- New York, N.Y. -- Science. 2000 Jun 30;288(5475):2360-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biology Laboratory, The Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10875920" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis ; *Arabidopsis Proteins ; Brassinosteroids ; Cell Death ; Cell Line ; Chitinase/genetics ; Cholestanols/*metabolism/pharmacology ; Gene Expression Regulation, Plant ; Ligands ; Oryza/cytology/*metabolism/microbiology ; Phenylalanine Ammonia-Lyase/genetics ; Plant Proteins/genetics/metabolism ; Plants, Genetically Modified ; Protein Kinases/*chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Respiratory Burst ; *Signal Transduction ; Steroids, Heterocyclic/*metabolism/pharmacology ; Xanthomonas/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-01-04
    Description: Mammalian homologues of Drosophila melanogaster transient receptor potential (TRP) are a large family of multimeric cation channels that act, or putatively act, as sensors of one or more chemical factor. Major research objectives are the identification of endogenous activators and the determination of cellular and tissue functions of these channels. Here we show the activation of TRPC5 (canonical TRP 5) homomultimeric and TRPC5-TRPC1 heteromultimeric channels by extracellular reduced thioredoxin, which acts by breaking a disulphide bridge in the predicted extracellular loop adjacent to the ion-selectivity filter of TRPC5. Thioredoxin is an endogenous redox protein with established intracellular functions, but it is also secreted and its extracellular targets are largely unknown. Particularly high extracellular concentrations of thioredoxin are apparent in rheumatoid arthritis, an inflammatory joint disease that disables millions of people worldwide. We show that TRPC5 and TRPC1 are expressed in secretory fibroblast-like synoviocytes from patients with rheumatoid arthritis, that endogenous TRPC5-TRPC1 channels of the cells are activated by reduced thioredoxin, and that blockade of the channels enhances secretory activity and prevents the suppression of secretion by thioredoxin. The data indicate the presence of a previously unrecognized ion-channel activation mechanism that couples extracellular thioredoxin to cell function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645077/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645077/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Shang-Zhong -- Sukumar, Piruthivi -- Zeng, Fanning -- Li, Jing -- Jairaman, Amit -- English, Anne -- Naylor, Jacqueline -- Ciurtin, Coziana -- Majeed, Yasser -- Milligan, Carol J -- Bahnasi, Yahya M -- Al-Shawaf, Eman -- Porter, Karen E -- Jiang, Lin-Hua -- Emery, Paul -- Sivaprasadarao, Asipu -- Beech, David J -- 077424/Wellcome Trust/United Kingdom -- 083857/Wellcome Trust/United Kingdom -- 18475/Arthritis Research UK/United Kingdom -- BB/D524875/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2008 Jan 3;451(7174):69-72. doi: 10.1038/nature06414.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Membrane and Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18172497" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthritis, Rheumatoid/metabolism/pathology ; Cell Line ; Disulfides/chemistry/metabolism ; Electric Conductivity ; Humans ; Oxidation-Reduction/drug effects ; Patch-Clamp Techniques ; Rabbits ; TRPC Cation Channels/*agonists/chemistry/*metabolism ; Thioredoxins/chemistry/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-01-02
    Description: Prions are infectious proteins consisting mainly of PrP(Sc), a beta sheet-rich conformer of the normal host protein PrP(C), and occur in different strains. Strain identity is thought to be encoded by PrP(Sc) conformation. We found that biologically cloned prion populations gradually became heterogeneous by accumulating "mutants," and selective pressures resulted in the emergence of different mutants as major constituents of the evolving population. Thus, when transferred from brain to cultured cells, "cell-adapted" prions outcompeted their "brain-adapted" counterparts, and the opposite occurred when prions were returned from cells to brain. Similarly, the inhibitor swainsonine selected for a resistant substrain, whereas, in its absence, the susceptible substrain outgrew its resistant counterpart. Prions, albeit devoid of a nucleic acid genome, are thus subject to mutation and selective amplification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848070/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848070/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Jiali -- Browning, Shawn -- Mahal, Sukhvir P -- Oelschlegel, Anja M -- Weissmann, Charles -- NS059543/NS/NINDS NIH HHS/ -- R01 NS059543/NS/NINDS NIH HHS/ -- R01 NS059543-01/NS/NINDS NIH HHS/ -- R01 NS059543-02/NS/NINDS NIH HHS/ -- R01 NS067214/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):869-72. doi: 10.1126/science.1183218. Epub 2009 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Chemistry ; Cell Line ; Cell Line, Tumor ; Culture Media ; Culture Media, Conditioned ; *Evolution, Molecular ; Mice ; Mice, Inbred C57BL ; Mutation ; *PrPSc Proteins/chemistry/classification/pathogenicity ; Prion Diseases ; Prions/chemistry/classification/*pathogenicity/*physiology ; Protein Conformation ; Swainsonine/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-04-09
    Description: Small nuclear RNAs (snRNAs) are essential factors in messenger RNA splicing. By means of homozygosity mapping and deep sequencing, we show that a gene encoding U4atac snRNA, a component of the minor U12-dependent spliceosome, is mutated in individuals with microcephalic osteodysplastic primordial dwarfism type I (MOPD I), a severe developmental disorder characterized by extreme intrauterine growth retardation and multiple organ abnormalities. Functional assays showed that mutations (30G〉A, 51G〉A, 55G〉A, and 111G〉A) associated with MOPD I cause defective U12-dependent splicing. Endogenous U12-dependent but not U2-dependent introns were found to be poorly spliced in MOPD I patient fibroblast cells. The introduction of wild-type U4atac snRNA into MOPD I cells enhanced U12-dependent splicing. These results illustrate the critical role of minor intron splicing in human development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380448/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380448/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Huiling -- Liyanarachchi, Sandya -- Akagi, Keiko -- Nagy, Rebecca -- Li, Jingfeng -- Dietrich, Rosemary C -- Li, Wei -- Sebastian, Nikhil -- Wen, Bernard -- Xin, Baozhong -- Singh, Jarnail -- Yan, Pearlly -- Alder, Hansjuerg -- Haan, Eric -- Wieczorek, Dagmar -- Albrecht, Beate -- Puffenberger, Erik -- Wang, Heng -- Westman, Judith A -- Padgett, Richard A -- Symer, David E -- de la Chapelle, Albert -- GM079527/GM/NIGMS NIH HHS/ -- GM093074/GM/NIGMS NIH HHS/ -- P30 CA16058/CA/NCI NIH HHS/ -- R01 GM079527/GM/NIGMS NIH HHS/ -- R01 GM079527-04/GM/NIGMS NIH HHS/ -- R01 GM093074/GM/NIGMS NIH HHS/ -- R01 GM093074-01A1/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):238-40. doi: 10.1126/science.1200587.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Cancer Genetics Program, Ohio State University, Columbus, OH 43210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474760" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Chromosomes, Human, Pair 2/genetics ; Dwarfism/genetics/metabolism ; Female ; Fetal Growth Retardation/genetics/metabolism ; Humans ; Introns ; Inverted Repeat Sequences ; Male ; Microcephaly/genetics/metabolism ; *Mutation ; Nucleic Acid Conformation ; Osteochondrodysplasias/genetics/metabolism ; Pedigree ; *RNA Splicing ; RNA, Small Nuclear/chemistry/*genetics/metabolism ; Spliceosomes/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-07-18
    Description: The inflammasome regulates the release of caspase activation-dependent cytokines, including interleukin (IL)-1beta, IL-18 and high-mobility group box 1 (HMGB1). By studying HMGB1 release mechanisms, here we identify a role for double-stranded RNA-dependent protein kinase (PKR, also known as EIF2AK2) in inflammasome activation. Exposure of macrophages to inflammasome agonists induced PKR autophosphorylation. PKR inactivation by genetic deletion or pharmacological inhibition severely impaired inflammasome activation in response to double-stranded RNA, ATP, monosodium urate, adjuvant aluminium, rotenone, live Escherichia coli, anthrax lethal toxin, DNA transfection and Salmonella typhimurium infection. PKR deficiency significantly inhibited the secretion of IL-1beta, IL-18 and HMGB1 in E. coli-induced peritonitis. PKR physically interacts with several inflammasome components, including NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3), NLRP1, NLR family CARD domain-containing protein 4 (NLRC4), absent in melanoma 2 (AIM2), and broadly regulates inflammasome activation. PKR autophosphorylation in a cell-free system with recombinant NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC, also known as PYCARD) and pro-caspase-1 reconstitutes inflammasome activity. These results show a crucial role for PKR in inflammasome activation, and indicate that it should be possible to pharmacologically target this molecule to treat inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163918/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163918/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Ben -- Nakamura, Takahisa -- Inouye, Karen -- Li, Jianhua -- Tang, Yiting -- Lundback, Peter -- Valdes-Ferrer, Sergio I -- Olofsson, Peder S -- Kalb, Thomas -- Roth, Jesse -- Zou, Yongrui -- Erlandsson-Harris, Helena -- Yang, Huan -- Ting, Jenny P-Y -- Wang, Haichao -- Andersson, Ulf -- Antoine, Daniel J -- Chavan, Sangeeta S -- Hotamisligil, Gokhan S -- Tracey, Kevin J -- DK052539/DK/NIDDK NIH HHS/ -- G0700654/Medical Research Council/United Kingdom -- R01 DK052539/DK/NIDDK NIH HHS/ -- R01 GM057226/GM/NIGMS NIH HHS/ -- R01 GM062508/GM/NIGMS NIH HHS/ -- R01 GM62508/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Aug 30;488(7413):670-4. doi: 10.1038/nature11290.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York 11030, USA. blu@nshs.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22801494" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Adenosine Triphosphate/pharmacology ; Animals ; Antigens, Bacterial/pharmacology ; Apoptosis Regulatory Proteins/metabolism ; Bacterial Toxins/pharmacology ; CARD Signaling Adaptor Proteins/metabolism ; Calcium-Binding Proteins/metabolism ; Carrier Proteins/metabolism ; Cell Line ; Cells, Cultured ; Crystallins/metabolism ; Escherichia coli/immunology/physiology ; Escherichia coli Infections/immunology/metabolism ; Female ; HMGB1 Protein/blood/*secretion ; Humans ; Inflammasomes/agonists/*metabolism ; Interleukin-18/blood ; Interleukin-1beta/blood ; Interleukin-6/analysis/blood ; Macrophages, Peritoneal/drug effects/metabolism ; Male ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Peritonitis/metabolism ; Phosphorylation ; RNA, Double-Stranded/immunology/pharmacology ; Rotenone/pharmacology ; Salmonella Infections/immunology/metabolism ; Salmonella typhimurium/immunology/physiology ; Transfection ; Uric Acid/pharmacology ; eIF-2 Kinase/antagonists & inhibitors/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-11-21
    Description: To broaden our understanding of the evolution of gene regulation mechanisms, we generated occupancy profiles for 34 orthologous transcription factors (TFs) in human-mouse erythroid progenitor, lymphoblast and embryonic stem-cell lines. By combining the genome-wide transcription factor occupancy repertoires, associated epigenetic signals, and co-association patterns, here we deduce several evolutionary principles of gene regulatory features operating since the mouse and human lineages diverged. The genomic distribution profiles, primary binding motifs, chromatin states, and DNA methylation preferences are well conserved for TF-occupied sequences. However, the extent to which orthologous DNA segments are bound by orthologous TFs varies both among TFs and with genomic location: binding at promoters is more highly conserved than binding at distal elements. Notably, occupancy-conserved TF-occupied sequences tend to be pleiotropic; they function in several tissues and also co-associate with many TFs. Single nucleotide variants at sites with potential regulatory functions are enriched in occupancy-conserved TF-occupied sequences.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4343047/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4343047/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Yong -- Ma, Zhihai -- Kim, Bong-Hyun -- Wu, Weisheng -- Cayting, Philip -- Boyle, Alan P -- Sundaram, Vasavi -- Xing, Xiaoyun -- Dogan, Nergiz -- Li, Jingjing -- Euskirchen, Ghia -- Lin, Shin -- Lin, Yiing -- Visel, Axel -- Kawli, Trupti -- Yang, Xinqiong -- Patacsil, Dorrelyn -- Keller, Cheryl A -- Giardine, Belinda -- Mouse ENCODE Consortium -- Kundaje, Anshul -- Wang, Ting -- Pennacchio, Len A -- Weng, Zhiping -- Hardison, Ross C -- Snyder, Michael P -- 1U54HG00699/HG/NHGRI NIH HHS/ -- 3RC2HG005602/HG/NHGRI NIH HHS/ -- 5U54HG006996/HG/NHGRI NIH HHS/ -- R01 DK065806/DK/NIDDK NIH HHS/ -- R01 DK096266/DK/NIDDK NIH HHS/ -- R01 ES024992/ES/NIEHS NIH HHS/ -- R01 EY021482/EY/NEI NIH HHS/ -- R01 GM083337/GM/NIGMS NIH HHS/ -- R01 HG003988/HG/NHGRI NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG007175/HG/NHGRI NIH HHS/ -- R01 HG007348/HG/NHGRI NIH HHS/ -- R01 HG007354/HG/NHGRI NIH HHS/ -- R01DK065806/DK/NIDDK NIH HHS/ -- R01HG003988/HG/NHGRI NIH HHS/ -- R37 DK044746/DK/NIDDK NIH HHS/ -- RC2 HG005573/HG/NHGRI NIH HHS/ -- RC2 HG005602/HG/NHGRI NIH HHS/ -- RC2HG005573/HG/NHGRI NIH HHS/ -- U01 DE024427/DE/NIDCR NIH HHS/ -- U41 HG007234/HG/NHGRI NIH HHS/ -- U54 HG006996/HG/NHGRI NIH HHS/ -- U54 HG006997/HG/NHGRI NIH HHS/ -- U54 HG006998/HG/NHGRI NIH HHS/ -- U54 HG007004/HG/NHGRI NIH HHS/ -- U54HG006997/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Nov 20;515(7527):371-5. doi: 10.1038/nature13985.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University, Stanford, California 94305, USA. ; Program in Bioinformatics and Integrative Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. ; 1] Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA [2] BRCF Bioinformatics Core, University of Michigan, Ann Arbor, Michigan 48105, USA. ; Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA. ; Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. ; 1] Department of Genetics, Stanford University, Stanford, California 94305, USA [2] Division of Cardiovascular Medicine, Stanford University, Stanford, California 94304, USA. ; 1] Department of Genetics, Stanford University, Stanford, California 94305, USA [2] Department of Surgery, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; 1] Lawrence Berkeley National Laboratory, Genomics Division, Berkeley, California 94701, USA [2] Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA [3] School of Natural Sciences, University of California, Merced, California 95343, USA. ; 1] Lawrence Berkeley National Laboratory, Genomics Division, Berkeley, California 94701, USA [2] Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409826" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chromatin/genetics/metabolism ; Conserved Sequence/*genetics ; Enhancer Elements, Genetic/genetics ; Genome/*genetics ; *Genomics ; Humans ; Mice ; Polymorphism, Single Nucleotide/genetics ; Regulatory Sequences, Nucleic Acid/*genetics ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-03-15
    Description: Centrosome duplication is critical for cell division, and genome instability can result if duplication is not restricted to a single round per cell cycle. Centrosome duplication is controlled in part by CP110, a centriolar protein that positively regulates centriole duplication while restricting centriole elongation and ciliogenesis. Maintenance of normal CP110 levels is essential, as excessive CP110 drives centrosome over-duplication and suppresses ciliogenesis, whereas its depletion inhibits centriole amplification and leads to highly elongated centrioles and aberrant assembly of cilia in growing cells. CP110 levels are tightly controlled, partly through ubiquitination by the ubiquitin ligase complex SCF(cyclin F) during G2 and M phases of the cell cycle. Here, using human cells, we report a new mechanism for the regulation of centrosome duplication that requires USP33, a deubiquitinating enzyme that is able to regulate CP110 levels. USP33 interacts with CP110 and localizes to centrioles primarily in S and G2/M phases, the periods during which centrioles duplicate and elongate. USP33 potently and specifically deubiquitinates CP110, but not other cyclin-F substrates. USP33 activity antagonizes SCF(cyclin F)-mediated ubiquitination and promotes the generation of supernumerary centriolar foci, whereas ablation of USP33 destabilizes CP110 and thereby inhibits centrosome amplification and mitotic defects. To our knowledge, we have identified the first centriolar deubiquitinating enzyme whose expression regulates centrosome homeostasis by countering cyclin-F-mediated destruction of a key substrate. Our results point towards potential therapeutic strategies for inhibiting tumorigenesis associated with centrosome amplification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815529/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815529/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Ji -- D'Angiolella, Vincenzo -- Seeley, E Scott -- Kim, Sehyun -- Kobayashi, Tetsuo -- Fu, Wenxiang -- Campos, Eric I -- Pagano, Michele -- Dynlacht, Brian David -- 5R01HD069647-02/HD/NICHD NIH HHS/ -- R01 GM057587/GM/NIGMS NIH HHS/ -- R01 HD069647/HD/NICHD NIH HHS/ -- R37 CA076584/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Mar 14;495(7440):255-9. doi: 10.1038/nature11941.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Cancer Institute, Smilow Research Center, New York University School of Medicine, 522 1st Avenue, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23486064" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle ; Cell Cycle Proteins/*metabolism ; Cell Line ; Centrioles/metabolism ; Centrosome/*metabolism ; Cyclins/metabolism ; Homeostasis ; Humans ; Microtubule-Associated Proteins/*metabolism ; Neoplasms/pathology/therapy ; Phosphoproteins/*metabolism ; Protein Stability ; SKP Cullin F-Box Protein Ligases/metabolism ; Ubiquitin Thiolesterase/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-05-17
    Description: Gene expression differs among individuals and populations and is thought to be a major determinant of phenotypic variation. Although variation and genetic loci responsible for RNA expression levels have been analysed extensively in human populations, our knowledge is limited regarding the differences in human protein abundance and the genetic basis for this difference. Variation in messenger RNA expression is not a perfect surrogate for protein expression because the latter is influenced by an array of post-transcriptional regulatory mechanisms, and, empirically, the correlation between protein and mRNA levels is generally modest. Here we used isobaric tag-based quantitative mass spectrometry to determine relative protein levels of 5,953 genes in lymphoblastoid cell lines from 95 diverse individuals genotyped in the HapMap Project. We found that protein levels are heritable molecular phenotypes that exhibit considerable variation between individuals, populations and sexes. Levels of specific sets of proteins involved in the same biological process covary among individuals, indicating that these processes are tightly regulated at the protein level. We identified cis-pQTLs (protein quantitative trait loci), including variants not detected by previous transcriptome studies. This study demonstrates the feasibility of high-throughput human proteome quantification that, when integrated with DNA variation and transcriptome information, adds a new dimension to the characterization of gene expression regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Linfeng -- Candille, Sophie I -- Choi, Yoonha -- Xie, Dan -- Jiang, Lihua -- Li-Pook-Than, Jennifer -- Tang, Hua -- Snyder, Michael -- P50 HG002357/HG/NHGRI NIH HHS/ -- R01 GM073059/GM/NIGMS NIH HHS/ -- U01 HL107393/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 Jul 4;499(7456):79-82. doi: 10.1038/nature12223. Epub 2013 May 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23676674" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Ethnic Groups/genetics ; Female ; *Gene Expression Profiling ; Gene Expression Regulation/*genetics ; Genetic Variation ; Genotype ; HapMap Project ; Humans ; Male ; Mass Spectrometry ; *Phenotype ; *Protein Biosynthesis ; Proteome/*analysis/biosynthesis/*genetics ; Proteomics ; Quantitative Trait Loci ; RNA, Messenger/analysis/genetics ; Transcriptome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1995-05-26
    Description: Receptor-mediated activation of heterotrimeric guanine nucleotide-binding proteins (G proteins) results in the dissociation of alpha from beta gamma subunits, thereby allowing both to regulate effectors. Little is known about the regions of effectors required for recognition of G beta gamma. A peptide encoding residues 956 to 982 of adenylyl cyclase 2 specifically blocked G beta gamma stimulation of adenylyl cyclase 2, phospholipase C-beta 3, potassium channels, and beta-adrenergic receptor kinase as well as inhibition of calmodulin-stimulated adenylyl cyclases, but had no effect on interactions between G beta gamma and G alpha o. Substitutions in this peptide identified a functionally important motif, Gln-X-X-Glu-Arg, that is also conserved in regions of potassium channels and beta-adrenergic receptor kinases that participate in G beta gamma interactions. Thus, the region defined by residues 956 to 982 of adenylyl cyclase 2 may contain determinants important for receiving signals from G beta gamma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, J -- DeVivo, M -- Dingus, J -- Harry, A -- Li, J -- Sui, J -- Carty, D J -- Blank, J L -- Exton, J H -- Stoffel, R H -- CA-44998/CA/NCI NIH HHS/ -- DK-37219/DK/NIDDK NIH HHS/ -- DK-38761/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1995 May 26;268(5214):1166-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Mount Sinai School of Medicine, City University of New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7761832" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclase Inhibitors ; Adenylyl Cyclases/*chemistry/metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Enzyme Activation/physiology ; GTP-Binding Proteins/chemistry/*physiology ; Guanosine Triphosphate/physiology ; In Vitro Techniques ; Molecular Sequence Data ; Peptide Fragments/chemical synthesis/chemistry/physiology ; Potassium Channels/physiology ; Rats ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptors, Adrenergic, beta/metabolism ; Signal Transduction/physiology ; Structure-Activity Relationship ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1994-11-25
    Description: Although several ion channels have been reported to be directly modulated by calcium-calmodulin, they have not been conclusively shown to bind calmodulin, nor are the modulatory mechanisms understood. Study of the olfactory cyclic nucleotide-activated cation channel, which is modulated by calcium-calmodulin, indicates that calcium-calmodulin directly binds to a specific domain on the amino terminus of the channel. This binding reduces the effective affinity of the channel for cyclic nucleotides, apparently by acting on channel gating, which is tightly coupled to ligand binding. The data reveal a control mechanism that resembles those underlying the regulation of enzymes by calmodulin. The results also point to the amino-terminal part of the olfactory channel as an element for gating, which may have general significance in the operation of ion channels with similar overall structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, M -- Chen, T Y -- Ahamed, B -- Li, J -- Yau, K W -- EY 06837/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1994 Nov 25;266(5189):1348-54.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baltimore, MD.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7526466" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Calcium/*metabolism ; Calmodulin/*metabolism ; Cell Line ; Cyclic AMP/*metabolism ; Cyclic GMP/*metabolism ; Humans ; *Ion Channel Gating ; Ion Channels/chemistry/*metabolism ; Molecular Sequence Data ; Olfactory Receptor Neurons/metabolism ; Peptides/metabolism ; Protein Structure, Secondary ; Rats ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...