ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1995-05-26
    Description: Receptor-mediated activation of heterotrimeric guanine nucleotide-binding proteins (G proteins) results in the dissociation of alpha from beta gamma subunits, thereby allowing both to regulate effectors. Little is known about the regions of effectors required for recognition of G beta gamma. A peptide encoding residues 956 to 982 of adenylyl cyclase 2 specifically blocked G beta gamma stimulation of adenylyl cyclase 2, phospholipase C-beta 3, potassium channels, and beta-adrenergic receptor kinase as well as inhibition of calmodulin-stimulated adenylyl cyclases, but had no effect on interactions between G beta gamma and G alpha o. Substitutions in this peptide identified a functionally important motif, Gln-X-X-Glu-Arg, that is also conserved in regions of potassium channels and beta-adrenergic receptor kinases that participate in G beta gamma interactions. Thus, the region defined by residues 956 to 982 of adenylyl cyclase 2 may contain determinants important for receiving signals from G beta gamma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, J -- DeVivo, M -- Dingus, J -- Harry, A -- Li, J -- Sui, J -- Carty, D J -- Blank, J L -- Exton, J H -- Stoffel, R H -- CA-44998/CA/NCI NIH HHS/ -- DK-37219/DK/NIDDK NIH HHS/ -- DK-38761/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1995 May 26;268(5214):1166-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Mount Sinai School of Medicine, City University of New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7761832" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclase Inhibitors ; Adenylyl Cyclases/*chemistry/metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Enzyme Activation/physiology ; GTP-Binding Proteins/chemistry/*physiology ; Guanosine Triphosphate/physiology ; In Vitro Techniques ; Molecular Sequence Data ; Peptide Fragments/chemical synthesis/chemistry/physiology ; Potassium Channels/physiology ; Rats ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptors, Adrenergic, beta/metabolism ; Signal Transduction/physiology ; Structure-Activity Relationship ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...