ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-08-10
    Description: Primate-specific segmental duplications are considered important in human disease and evolution. The inability to distinguish between allelic and duplication sequence overlap has hampered their characterization as well as assembly and annotation of our genome. We developed a method whereby each public sequence is analyzed at the clone level for overrepresentation within a whole-genome shotgun sequence. This test has the ability to detect duplications larger than 15 kilobases irrespective of copy number, location, or high sequence similarity. We mapped 169 large regions flanked by highly similar duplications. Twenty-four of these hot spots of genomic instability have been associated with genetic disease. Our analysis indicates a highly nonrandom chromosomal and genic distribution of recent segmental duplications, with a likely role in expanding protein diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bailey, Jeffrey A -- Gu, Zhiping -- Clark, Royden A -- Reinert, Knut -- Samonte, Rhea V -- Schwartz, Stuart -- Adams, Mark D -- Myers, Eugene W -- Li, Peter W -- Eichler, Evan E -- CA094816/CA/NCI NIH HHS/ -- GM58815/GM/NIGMS NIH HHS/ -- HG002318/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 9;297(5583):1003-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Center for Computational Genomics, and Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12169732" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Base Sequence ; Biological Evolution ; Chromosomes, Human/genetics ; Computational Biology ; Databases, Nucleic Acid ; Exons ; Expressed Sequence Tags ; *Gene Duplication ; Gene Rearrangement ; *Genes, Duplicate ; Genetic Diseases, Inborn/genetics ; *Genome, Human ; Humans ; Models, Genetic ; Polymorphism, Single Nucleotide ; Proteome ; Recombination, Genetic ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-05-03
    Description: Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale--particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation--a standard for genotyping platforms and a prelude to future individual genome sequencing projects.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2424287/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2424287/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kidd, Jeffrey M -- Cooper, Gregory M -- Donahue, William F -- Hayden, Hillary S -- Sampas, Nick -- Graves, Tina -- Hansen, Nancy -- Teague, Brian -- Alkan, Can -- Antonacci, Francesca -- Haugen, Eric -- Zerr, Troy -- Yamada, N Alice -- Tsang, Peter -- Newman, Tera L -- Tuzun, Eray -- Cheng, Ze -- Ebling, Heather M -- Tusneem, Nadeem -- David, Robert -- Gillett, Will -- Phelps, Karen A -- Weaver, Molly -- Saranga, David -- Brand, Adrianne -- Tao, Wei -- Gustafson, Erik -- McKernan, Kevin -- Chen, Lin -- Malig, Maika -- Smith, Joshua D -- Korn, Joshua M -- McCarroll, Steven A -- Altshuler, David A -- Peiffer, Daniel A -- Dorschner, Michael -- Stamatoyannopoulos, John -- Schwartz, David -- Nickerson, Deborah A -- Mullikin, James C -- Wilson, Richard K -- Bruhn, Laurakay -- Olson, Maynard V -- Kaul, Rajinder -- Smith, Douglas R -- Eichler, Evan E -- 3 U54 HG002043/HG/NHGRI NIH HHS/ -- HG004120/HG/NHGRI NIH HHS/ -- P01 HG004120/HG/NHGRI NIH HHS/ -- P01 HG004120-01/HG/NHGRI NIH HHS/ -- U54 HG002043-07S1/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 May 1;453(7191):56-64. doi: 10.1038/nature06862.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18451855" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosome Inversion/genetics ; Continental Population Groups/genetics ; Euchromatin/genetics ; Gene Deletion ; Genetic Variation/*genetics ; Genome, Human/*genetics ; Geography ; Haplotypes ; Humans ; Mutagenesis, Insertional/genetics ; *Physical Chromosome Mapping ; Polymorphism, Single Nucleotide/genetics ; Reproducibility of Results ; *Sequence Analysis, DNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-08-18
    Description: Genome-wide association studies suggest that common genetic variants explain only a modest fraction of heritable risk for common diseases, raising the question of whether rare variants account for a significant fraction of unexplained heritability. Although DNA sequencing costs have fallen markedly, they remain far from what is necessary for rare and novel variants to be routinely identified at a genome-wide scale in large cohorts. We have therefore sought to develop second-generation methods for targeted sequencing of all protein-coding regions ('exomes'), to reduce costs while enriching for discovery of highly penetrant variants. Here we report on the targeted capture and massively parallel sequencing of the exomes of 12 humans. These include eight HapMap individuals representing three populations, and four unrelated individuals with a rare dominantly inherited disorder, Freeman-Sheldon syndrome (FSS). We demonstrate the sensitive and specific identification of rare and common variants in over 300 megabases of coding sequence. Using FSS as a proof-of-concept, we show that candidate genes for Mendelian disorders can be identified by exome sequencing of a small number of unrelated, affected individuals. This strategy may be extendable to diseases with more complex genetics through larger sample sizes and appropriate weighting of non-synonymous variants by predicted functional impact.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844771/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2844771/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ng, Sarah B -- Turner, Emily H -- Robertson, Peggy D -- Flygare, Steven D -- Bigham, Abigail W -- Lee, Choli -- Shaffer, Tristan -- Wong, Michelle -- Bhattacharjee, Arindam -- Eichler, Evan E -- Bamshad, Michael -- Nickerson, Deborah A -- Shendure, Jay -- R01 HL094976/HL/NHLBI NIH HHS/ -- R01 HL094976-01/HL/NHLBI NIH HHS/ -- R21 HG004749/HG/NHGRI NIH HHS/ -- R21 HG004749-01/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Sep 10;461(7261):272-6. doi: 10.1038/nature08250. Epub 2009 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. sarahng@u.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19684571" target="_blank"〉PubMed〈/a〉
    Keywords: Exons/*genetics ; Gene Frequency/genetics ; Gene Library ; Genes, Dominant/genetics ; Genetic Predisposition to Disease/*genetics ; Genetic Testing/*methods ; Genetic Variation/*genetics ; Genome, Human/*genetics ; Haplotypes/genetics ; Humans ; INDEL Mutation/genetics ; Oligonucleotide Array Sequence Analysis ; Polymorphism, Single Nucleotide/genetics ; RNA Splice Sites/genetics ; Sample Size ; Sensitivity and Specificity ; Sequence Analysis, DNA/*methods ; Syndrome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-04-14
    Description: A systematic fluorescence in situ hybridization comparison of macaque and human synteny organization disclosed five additional macaque evolutionary new centromeres (ENCs) for a total of nine ENCs. To understand the dynamics of ENC formation and progression, we compared the ENC of macaque chromosome 4 with the human orthologous region, at 6q24.3, that conserves the ancestral genomic organization. A 250-kilobase segment was extensively duplicated around the macaque centromere. These duplications were strictly intrachromosomal. Our results suggest that novel centromeres may trigger only local duplication activity and that the absence of genes in the seeding region may have been important in ENC maintenance and progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ventura, Mario -- Antonacci, Francesca -- Cardone, Maria Francesca -- Stanyon, Roscoe -- D'Addabbo, Pietro -- Cellamare, Angelo -- Sprague, L James -- Eichler, Evan E -- Archidiacono, Nicoletta -- Rocchi, Mariano -- GM58815/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):243-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Microbiology, University of Bari, 70126 Bari, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431171" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Centromere ; Chromosomes, Human, Pair 6 ; Dna ; *Evolution, Molecular ; Gene Duplication ; Humans ; Macaca mulatta/*genetics ; Molecular Sequence Data ; Sequence Tagged Sites ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-05-08
    Description: Neandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. We show that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Green, Richard E -- Krause, Johannes -- Briggs, Adrian W -- Maricic, Tomislav -- Stenzel, Udo -- Kircher, Martin -- Patterson, Nick -- Li, Heng -- Zhai, Weiwei -- Fritz, Markus Hsi-Yang -- Hansen, Nancy F -- Durand, Eric Y -- Malaspinas, Anna-Sapfo -- Jensen, Jeffrey D -- Marques-Bonet, Tomas -- Alkan, Can -- Prufer, Kay -- Meyer, Matthias -- Burbano, Hernan A -- Good, Jeffrey M -- Schultz, Rigo -- Aximu-Petri, Ayinuer -- Butthof, Anne -- Hober, Barbara -- Hoffner, Barbara -- Siegemund, Madlen -- Weihmann, Antje -- Nusbaum, Chad -- Lander, Eric S -- Russ, Carsten -- Novod, Nathaniel -- Affourtit, Jason -- Egholm, Michael -- Verna, Christine -- Rudan, Pavao -- Brajkovic, Dejana -- Kucan, Zeljko -- Gusic, Ivan -- Doronichev, Vladimir B -- Golovanova, Liubov V -- Lalueza-Fox, Carles -- de la Rasilla, Marco -- Fortea, Javier -- Rosas, Antonio -- Schmitz, Ralf W -- Johnson, Philip L F -- Eichler, Evan E -- Falush, Daniel -- Birney, Ewan -- Mullikin, James C -- Slatkin, Montgomery -- Nielsen, Rasmus -- Kelso, Janet -- Lachmann, Michael -- Reich, David -- Paabo, Svante -- GM40282/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 May 7;328(5979):710-22. doi: 10.1126/science.1188021.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. green@eva.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448178" target="_blank"〉PubMed〈/a〉
    Keywords: African Continental Ancestry Group/genetics ; Animals ; Asian Continental Ancestry Group/genetics ; Base Sequence ; Bone and Bones ; DNA, Mitochondrial/genetics ; European Continental Ancestry Group/genetics ; Evolution, Molecular ; Extinction, Biological ; Female ; *Fossils ; Gene Dosage ; Gene Flow ; Genetic Variation ; *Genome ; *Genome, Human ; Haplotypes ; Hominidae/*genetics ; Humans ; Pan troglodytes/genetics ; Polymorphism, Single Nucleotide ; Selection, Genetic ; Sequence Alignment ; *Sequence Analysis, DNA ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-09-01
    Description: We present a DNA library preparation method that has allowed us to reconstruct a high-coverage (30x) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in these archaic hominins was extremely low. It also allows tentative dating of the specimen on the basis of "missing evolution" in its genome, detailed measurements of Denisovan and Neandertal admixture into present-day human populations, and the generation of a near-complete catalog of genetic changes that swept to high frequency in modern humans since their divergence from Denisovans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617501/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617501/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, Matthias -- Kircher, Martin -- Gansauge, Marie-Theres -- Li, Heng -- Racimo, Fernando -- Mallick, Swapan -- Schraiber, Joshua G -- Jay, Flora -- Prufer, Kay -- de Filippo, Cesare -- Sudmant, Peter H -- Alkan, Can -- Fu, Qiaomei -- Do, Ron -- Rohland, Nadin -- Tandon, Arti -- Siebauer, Michael -- Green, Richard E -- Bryc, Katarzyna -- Briggs, Adrian W -- Stenzel, Udo -- Dabney, Jesse -- Shendure, Jay -- Kitzman, Jacob -- Hammer, Michael F -- Shunkov, Michael V -- Derevianko, Anatoli P -- Patterson, Nick -- Andres, Aida M -- Eichler, Evan E -- Slatkin, Montgomery -- Reich, David -- Kelso, Janet -- Paabo, Svante -- GM100233/GM/NIGMS NIH HHS/ -- R01 GM040282/GM/NIGMS NIH HHS/ -- R01 GM100233/GM/NIGMS NIH HHS/ -- R01-GM40282/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Oct 12;338(6104):222-6. doi: 10.1126/science.1224344. Epub 2012 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. mmeyer@eva.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936568" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Base Sequence ; Fossils ; Gene Flow ; Gene Library ; *Genetic Variation ; Genome, Human/*genetics ; *Heterozygote ; Humans ; Molecular Sequence Data ; Neanderthals/*genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-06-23
    Description: Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498939/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498939/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prufer, Kay -- Munch, Kasper -- Hellmann, Ines -- Akagi, Keiko -- Miller, Jason R -- Walenz, Brian -- Koren, Sergey -- Sutton, Granger -- Kodira, Chinnappa -- Winer, Roger -- Knight, James R -- Mullikin, James C -- Meader, Stephen J -- Ponting, Chris P -- Lunter, Gerton -- Higashino, Saneyuki -- Hobolth, Asger -- Dutheil, Julien -- Karakoc, Emre -- Alkan, Can -- Sajjadian, Saba -- Catacchio, Claudia Rita -- Ventura, Mario -- Marques-Bonet, Tomas -- Eichler, Evan E -- Andre, Claudine -- Atencia, Rebeca -- Mugisha, Lawrence -- Junhold, Jorg -- Patterson, Nick -- Siebauer, Michael -- Good, Jeffrey M -- Fischer, Anne -- Ptak, Susan E -- Lachmann, Michael -- Symer, David E -- Mailund, Thomas -- Schierup, Mikkel H -- Andres, Aida M -- Kelso, Janet -- Paabo, Svante -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 2R01GM077117-04A1/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- MC_U137761446/Medical Research Council/United Kingdom -- R01 GM077117/GM/NIGMS NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2012 Jun 28;486(7404):527-31. doi: 10.1038/nature11128.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany. pruefer@eva.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722832" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA Transposable Elements/genetics ; *Evolution, Molecular ; Gene Duplication/genetics ; Genetic Variation/*genetics ; Genome/*genetics ; Genome, Human/*genetics ; Genotype ; Humans ; Molecular Sequence Data ; Pan paniscus/*genetics ; Pan troglodytes/*genetics ; Phenotype ; Phylogeny ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-11-11
    Description: The human genome is arguably the most complete mammalian reference assembly, yet more than 160 euchromatic gaps remain and aspects of its structural variation remain poorly understood ten years after its completion. To identify missing sequence and genetic variation, here we sequence and analyse a haploid human genome (CHM1) using single-molecule, real-time DNA sequencing. We close or extend 55% of the remaining interstitial gaps in the human GRCh37 reference genome--78% of which carried long runs of degenerate short tandem repeats, often several kilobases in length, embedded within (G+C)-rich genomic regions. We resolve the complete sequence of 26,079 euchromatic structural variants at the base-pair level, including inversions, complex insertions and long tracts of tandem repeats. Most have not been previously reported, with the greatest increases in sensitivity occurring for events less than 5 kilobases in size. Compared to the human reference, we find a significant insertional bias (3:1) in regions corresponding to complex insertions and long short tandem repeats. Our results suggest a greater complexity of the human genome in the form of variation of longer and more complex repetitive DNA that can now be largely resolved with the application of this longer-read sequencing technology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317254/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317254/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chaisson, Mark J P -- Huddleston, John -- Dennis, Megan Y -- Sudmant, Peter H -- Malig, Maika -- Hormozdiari, Fereydoun -- Antonacci, Francesca -- Surti, Urvashi -- Sandstrom, Richard -- Boitano, Matthew -- Landolin, Jane M -- Stamatoyannopoulos, John A -- Hunkapiller, Michael W -- Korlach, Jonas -- Eichler, Evan E -- HG002385/HG/NHGRI NIH HHS/ -- HG007497/HG/NHGRI NIH HHS/ -- K99 NS083627/NS/NINDS NIH HHS/ -- K99NS083627/NS/NINDS NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- U41 HG007497/HG/NHGRI NIH HHS/ -- U41 HG007635/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jan 29;517(7536):608-11. doi: 10.1038/nature13907. Epub 2014 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA. ; 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA. ; Dipartimento di Biologia, Universita degli Studi di Bari 'Aldo Moro', Bari 70125, Italy. ; Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA. ; Pacific Biosciences of California, Inc., Menlo Park, California 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383537" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosome Inversion/genetics ; Chromosomes, Human, Pair 10/genetics ; Cloning, Molecular ; GC Rich Sequence/genetics ; Genetic Variation/*genetics ; Genome, Human/*genetics ; *Genomics ; Haploidy ; Humans ; Mutagenesis, Insertional/genetics ; Reference Standards ; Sequence Analysis, DNA/*methods ; Tandem Repeat Sequences/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-10-04
    Description: Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617611/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617611/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sudmant, Peter H -- Rausch, Tobias -- Gardner, Eugene J -- Handsaker, Robert E -- Abyzov, Alexej -- Huddleston, John -- Zhang, Yan -- Ye, Kai -- Jun, Goo -- Hsi-Yang Fritz, Markus -- Konkel, Miriam K -- Malhotra, Ankit -- Stutz, Adrian M -- Shi, Xinghua -- Paolo Casale, Francesco -- Chen, Jieming -- Hormozdiari, Fereydoun -- Dayama, Gargi -- Chen, Ken -- Malig, Maika -- Chaisson, Mark J P -- Walter, Klaudia -- Meiers, Sascha -- Kashin, Seva -- Garrison, Erik -- Auton, Adam -- Lam, Hugo Y K -- Jasmine Mu, Xinmeng -- Alkan, Can -- Antaki, Danny -- Bae, Taejeong -- Cerveira, Eliza -- Chines, Peter -- Chong, Zechen -- Clarke, Laura -- Dal, Elif -- Ding, Li -- Emery, Sarah -- Fan, Xian -- Gujral, Madhusudan -- Kahveci, Fatma -- Kidd, Jeffrey M -- Kong, Yu -- Lameijer, Eric-Wubbo -- McCarthy, Shane -- Flicek, Paul -- Gibbs, Richard A -- Marth, Gabor -- Mason, Christopher E -- Menelaou, Androniki -- Muzny, Donna M -- Nelson, Bradley J -- Noor, Amina -- Parrish, Nicholas F -- Pendleton, Matthew -- Quitadamo, Andrew -- Raeder, Benjamin -- Schadt, Eric E -- Romanovitch, Mallory -- Schlattl, Andreas -- Sebra, Robert -- Shabalin, Andrey A -- Untergasser, Andreas -- Walker, Jerilyn A -- Wang, Min -- Yu, Fuli -- Zhang, Chengsheng -- Zhang, Jing -- Zheng-Bradley, Xiangqun -- Zhou, Wanding -- Zichner, Thomas -- Sebat, Jonathan -- Batzer, Mark A -- McCarroll, Steven A -- 1000 Genomes Project Consortium -- Mills, Ryan E -- Gerstein, Mark B -- Bashir, Ali -- Stegle, Oliver -- Devine, Scott E -- Lee, Charles -- Eichler, Evan E -- Korbel, Jan O -- P01HG007497/HG/NHGRI NIH HHS/ -- R01 CA166661/CA/NCI NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- R01 HG002898/HG/NHGRI NIH HHS/ -- R01CA166661/CA/NCI NIH HHS/ -- R01GM59290/GM/NIGMS NIH HHS/ -- R01HG002898/HG/NHGRI NIH HHS/ -- R01HG007068/HG/NHGRI NIH HHS/ -- RR029676-01/RR/NCRR NIH HHS/ -- RR19895/RR/NCRR NIH HHS/ -- T32 GM008666/GM/NIGMS NIH HHS/ -- U41 HG007497/HG/NHGRI NIH HHS/ -- U41HG007497/HG/NHGRI NIH HHS/ -- WT085532/Z/08/Z/Wellcome Trust/United Kingdom -- WT104947/Z/14/Z/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Oct 1;526(7571):75-81. doi: 10.1038/nature15394.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, Seattle, Washington 98195-5065, USA. ; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany. ; Institute for Genome Sciences, University of Maryland School of Medicine, 801 W Baltimore Street, Baltimore, Maryland 21201, USA. ; Department of Genetics, Harvard Medical School, Boston, 25 Shattuck Street, Boston, Massachusetts 02115, USA. ; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA. ; Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA. ; Program in Computational Biology and Bioinformatics, Yale University, BASS 432 &437, 266 Whitney Avenue, New Haven, Connecticut 06520, USA. ; Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, USA. ; The Genome Institute, Washington University School of Medicine, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA. ; Department of Genetics, Washington University in St Louis, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA. ; Department of Biostatistics and Center for Statistical Genetics, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan 48109, USA. ; Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, 1200 Pressler St., Houston, Texas 77030, USA. ; Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, USA. ; The Jackson Laboratory for Genomic Medicine, 10 Discovery 263 Farmington Avenue, Farmington, Connecticut 06030, USA. ; Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, USA. ; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA. ; Department of Computational Medicine &Bioinformatics, University of Michigan, 500 S. State Street, Ann Arbor, Michigan 48109, USA. ; The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA. ; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. ; Department of Biology, Boston College, 355 Higgins Hall, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467, USA. ; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, New York 10461, USA. ; Bina Technologies, Roche Sequencing, 555 Twin Dolphin Drive, Redwood City, California 94065, USA. ; Cancer Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey. ; University of California San Diego (UCSD), 9500 Gilman Drive, La Jolla, California 92093, USA. ; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892 USA. ; Department of Medicine, Washington University in St Louis, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA. ; Siteman Cancer Center, 660 South Euclid Avenue, St Louis, Missouri 63110, USA. ; Department of Human Genetics, University of Michigan, 1241 Catherine Street, Ann Arbor, Michigan 48109, USA. ; Molecular Epidemiology, Leiden University Medical Center, Leiden 2300RA, The Netherlands. ; Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA. ; The Department of Physiology and Biophysics and the HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, 1305 York Avenue, Weill Cornell Medical College, New York, New York 10065, USA. ; The Feil Family Brain and Mind Research Institute, 413 East 69th St, Weill Cornell Medical College, New York, New York 10065, USA. ; University of Oxford, 1 South Parks Road, Oxford OX3 9DS, UK. ; Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands. ; Department of Genetics and Genomic Sciences, Icahn School of Medicine, New York School of Natural Sciences, 1428 Madison Avenue, New York, New York 10029, USA. ; Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan. ; Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, 1112 East Clay Street, McGuire Hall, Richmond, Virginia 23298-0581, USA. ; Zentrum fur Molekulare Biologie, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany. ; Department of Computer Science, Yale University, 51 Prospect Street, New Haven, Connecticut 06511, USA. ; Department of Graduate Studies - Life Sciences, Ewha Womans University, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, South Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26432246" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Genetic Predisposition to Disease ; Genetic Variation/*genetics ; Genetics, Medical ; Genetics, Population ; Genome, Human/*genetics ; Genome-Wide Association Study ; Genomics ; Genotype ; Haplotypes/genetics ; Homozygote ; Humans ; Molecular Sequence Data ; Mutation Rate ; *Physical Chromosome Mapping ; Polymorphism, Single Nucleotide/genetics ; Quantitative Trait Loci/genetics ; Sequence Analysis, DNA ; Sequence Deletion/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-11-21
    Description: To study the evolutionary dynamics of regulatory DNA, we mapped 〉1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337786/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337786/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vierstra, Jeff -- Rynes, Eric -- Sandstrom, Richard -- Zhang, Miaohua -- Canfield, Theresa -- Hansen, R Scott -- Stehling-Sun, Sandra -- Sabo, Peter J -- Byron, Rachel -- Humbert, Richard -- Thurman, Robert E -- Johnson, Audra K -- Vong, Shinny -- Lee, Kristen -- Bates, Daniel -- Neri, Fidencio -- Diegel, Morgan -- Giste, Erika -- Haugen, Eric -- Dunn, Douglas -- Wilken, Matthew S -- Josefowicz, Steven -- Samstein, Robert -- Chang, Kai-Hsin -- Eichler, Evan E -- De Bruijn, Marella -- Reh, Thomas A -- Skoultchi, Arthur -- Rudensky, Alexander -- Orkin, Stuart H -- Papayannopoulou, Thalia -- Treuting, Piper M -- Selleri, Licia -- Kaul, Rajinder -- Groudine, Mark -- Bender, M A -- Stamatoyannopoulos, John A -- 1RC2HG005654/HG/NHGRI NIH HHS/ -- 2R01HD04399709/HD/NICHD NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 DK096266/DK/NIDDK NIH HHS/ -- R01 EY021482/EY/NEI NIH HHS/ -- R01 HD043997/HD/NICHD NIH HHS/ -- R37 DK044746/DK/NIDDK NIH HHS/ -- R37DK44746/DK/NIDDK NIH HHS/ -- RC2 HG005654/HG/NHGRI NIH HHS/ -- U54 HG007010/HG/NHGRI NIH HHS/ -- U54HG007010/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Nov 21;346(6212):1007-12. doi: 10.1126/science.1246426.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. ; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. ; Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA. ; Department of Biological Structure, University of Washington, Seattle, WA 98195, USA. ; Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. Howard Hughes Medical Institute. ; Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute. ; Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK. ; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. ; Howard Hughes Medical Institute. Division of Hematology/Oncology, Children's Hospital Boston and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA. ; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA. ; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA. ; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Department of Radiation Oncology, University of Washington, Seattle, WA 98109, USA. ; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Department of Pediatrics, University of Washington, Seattle, WA 98195, USA. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA. jstam@uw.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25411453" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Conserved Sequence ; DNA/*genetics ; Deoxyribonuclease I ; *Evolution, Molecular ; Genome, Human ; Humans ; Mice ; Regulatory Sequences, Nucleic Acid/*genetics ; Restriction Mapping ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...