ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyons, Timothy W -- Reinhard, Christopher T -- England -- Nature. 2009 Sep 10;461(7261):179-81. doi: 10.1038/461179a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Timothy W. Lyons and Christopher T. Reinhard are in the Department of Earth Sciences, University of California, Riverside, California 92521, USA. timothy.lyons@ucr.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19741692" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/*chemistry ; Bacteria/metabolism ; Chromium/*analysis/chemistry ; Chromium Isotopes ; History, Ancient ; Iron/analysis ; Manganese Compounds/metabolism ; Oxidation-Reduction ; Oxides/metabolism ; Oxygen/*analysis/*metabolism ; Seawater/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-09-29
    Description: High-resolution geochemical analyses of organic-rich shale and carbonate through the 2500 million-year-old Mount McRae Shale in the Hamersley Basin of northwestern Australia record changes in both the oxidation state of the surface ocean and the atmospheric composition. The Mount McRae record of sulfur isotopes captures the widespread and possibly permanent activation of the oxidative sulfur cycle for perhaps the first time in Earth's history. The correlation of the time-series sulfur isotope signals in northwestern Australia with equivalent strata from South Africa suggests that changes in the exogenic sulfur cycle recorded in marine sediments were global in scope and were linked to atmospheric evolution. The data suggest that oxygenation of the surface ocean preceded pervasive and persistent atmospheric oxygenation by 50 million years or more.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaufman, Alan J -- Johnston, David T -- Farquhar, James -- Masterson, Andrew L -- Lyons, Timothy W -- Bates, Steve -- Anbar, Ariel D -- Arnold, Gail L -- Garvin, Jessica -- Buick, Roger -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1900-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742-4211, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901329" target="_blank"〉PubMed〈/a〉
    Keywords: *Atmosphere ; Australia ; Bacteria/metabolism ; Geologic Sediments/*chemistry/microbiology ; Oxidation-Reduction ; *Oxygen ; Seawater ; South Africa ; Sulfates/chemistry/metabolism ; *Sulfur/chemistry/metabolism ; Sulfur Isotopes/analysis ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...