ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (7)
Collection
Keywords
Years
  • 1
    Publication Date: 2010-06-04
    Description: Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cock, J Mark -- Sterck, Lieven -- Rouze, Pierre -- Scornet, Delphine -- Allen, Andrew E -- Amoutzias, Grigoris -- Anthouard, Veronique -- Artiguenave, Francois -- Aury, Jean-Marc -- Badger, Jonathan H -- Beszteri, Bank -- Billiau, Kenny -- Bonnet, Eric -- Bothwell, John H -- Bowler, Chris -- Boyen, Catherine -- Brownlee, Colin -- Carrano, Carl J -- Charrier, Benedicte -- Cho, Ga Youn -- Coelho, Susana M -- Collen, Jonas -- Corre, Erwan -- Da Silva, Corinne -- Delage, Ludovic -- Delaroque, Nicolas -- Dittami, Simon M -- Doulbeau, Sylvie -- Elias, Marek -- Farnham, Garry -- Gachon, Claire M M -- Gschloessl, Bernhard -- Heesch, Svenja -- Jabbari, Kamel -- Jubin, Claire -- Kawai, Hiroshi -- Kimura, Kei -- Kloareg, Bernard -- Kupper, Frithjof C -- Lang, Daniel -- Le Bail, Aude -- Leblanc, Catherine -- Lerouge, Patrice -- Lohr, Martin -- Lopez, Pascal J -- Martens, Cindy -- Maumus, Florian -- Michel, Gurvan -- Miranda-Saavedra, Diego -- Morales, Julia -- Moreau, Herve -- Motomura, Taizo -- Nagasato, Chikako -- Napoli, Carolyn A -- Nelson, David R -- Nyvall-Collen, Pi -- Peters, Akira F -- Pommier, Cyril -- Potin, Philippe -- Poulain, Julie -- Quesneville, Hadi -- Read, Betsy -- Rensing, Stefan A -- Ritter, Andres -- Rousvoal, Sylvie -- Samanta, Manoj -- Samson, Gaelle -- Schroeder, Declan C -- Segurens, Beatrice -- Strittmatter, Martina -- Tonon, Thierry -- Tregear, James W -- Valentin, Klaus -- von Dassow, Peter -- Yamagishi, Takahiro -- Van de Peer, Yves -- Wincker, Patrick -- England -- Nature. 2010 Jun 3;465(7298):617-21. doi: 10.1038/nature09016.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UPMC Universite Paris 6, The Marine Plants and Biomolecules Laboratory, UMR 7139, Station Biologique de Roscoff, Place Georges Teissier, BP74, 29682 Roscoff Cedex, France. cock@sb-roscoff.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20520714" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*genetics ; Animals ; *Biological Evolution ; Eukaryota ; Evolution, Molecular ; Genome/*genetics ; Molecular Sequence Data ; Phaeophyta/*cytology/*genetics/metabolism ; Phylogeny ; Pigments, Biological/biosynthesis ; Signal Transduction/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-01-07
    Description: There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106485/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106485/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scafidi, Joseph -- Hammond, Timothy R -- Scafidi, Susanna -- Ritter, Jonathan -- Jablonska, Beata -- Roncal, Maria -- Szigeti-Buck, Klara -- Coman, Daniel -- Huang, Yuegao -- McCarter, Robert J Jr -- Hyder, Fahmeed -- Horvath, Tamas L -- Gallo, Vittorio -- DP1 OD006850/OD/NIH HHS/ -- K08 NS069815/NS/NINDS NIH HHS/ -- K08 NS073793/NS/NINDS NIH HHS/ -- K08NS069815/NS/NINDS NIH HHS/ -- K08NS073793/NS/NINDS NIH HHS/ -- K12NS052159/NS/NINDS NIH HHS/ -- P01 NS062686/NS/NINDS NIH HHS/ -- P30 HD040677/HD/NICHD NIH HHS/ -- P30 NS05219/NS/NINDS NIH HHS/ -- P30 NS052519/NS/NINDS NIH HHS/ -- P30HD040677/HD/NICHD NIH HHS/ -- R01 NS045702/NS/NINDS NIH HHS/ -- R01MH067528/MH/NIMH NIH HHS/ -- R01NS045702/NS/NINDS NIH HHS/ -- R01NS056427/NS/NINDS NIH HHS/ -- England -- Nature. 2014 Feb 13;506(7487):230-4. doi: 10.1038/nature12880. Epub 2013 Dec 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Neuroscience Research, Children's National Medical Center, Washington DC 20010, USA [2] Department of Neurology, Children's National Medical Center, Washington DC 20010, USA. ; 1] Center for Neuroscience Research, Children's National Medical Center, Washington DC 20010, USA [2] Institute for Biomedical Sciences, The George Washington University, Washington DC 20052, USA. ; Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA. ; Center for Neuroscience Research, Children's National Medical Center, Washington DC 20010, USA. ; Department of Neurobiology, Yale University, New Haven, Connecticut 06520, USA. ; MRRC, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06520, USA. ; Center for Translational Science, Children's National Medical Center, Washington DC 20010, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24390343" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Intranasal ; Animals ; Animals, Newborn ; Anoxia/genetics/metabolism/pathology/physiopathology ; Brain Injuries/*congenital/*drug therapy/pathology/prevention & control ; Cell Differentiation/drug effects ; Cell Division/drug effects ; Cell Lineage/drug effects ; Cell Survival/drug effects ; Demyelinating Diseases/congenital/metabolism/pathology/prevention & control ; Disease Models, Animal ; Epidermal Growth Factor/administration & dosage/*pharmacology/*therapeutic use ; Humans ; Infant, Premature, Diseases/drug therapy/metabolism/pathology ; Male ; Mice ; Molecular Targeted Therapy ; Oligodendroglia/cytology/*drug effects/metabolism/pathology ; Receptor, Epidermal Growth Factor/genetics/metabolism ; Regeneration/drug effects ; Signal Transduction/drug effects ; Stem Cells/cytology/drug effects/metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-07
    Description: The centrosome is essential for cytotoxic T lymphocyte (CTL) function, contacting the plasma membrane and directing cytotoxic granules for secretion at the immunological synapse. Centrosome docking at the plasma membrane also occurs during cilia formation. The primary cilium, formed in nonhematopoietic cells, is essential for vertebrate Hedgehog (Hh) signaling. Lymphocytes do not form primary cilia, but we found and describe here that Hh signaling played an important role in CTL killing. T cell receptor activation, which "prearms" CTLs with cytotoxic granules, also initiated Hh signaling. Hh pathway activation occurred intracellularly and triggered Rac1 synthesis. These events "prearmed" CTLs for action by promoting the actin remodeling required for centrosome polarization and granule release. Thus, Hh signaling plays a role in CTL function, and the immunological synapse may represent a modified cilium.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022134/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022134/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de la Roche, Maike -- Ritter, Alex T -- Angus, Karen L -- Dinsmore, Colin -- Earnshaw, Charles H -- Reiter, Jeremy F -- Griffiths, Gillian M -- 075880/Wellcome Trust/United Kingdom -- 100140/Wellcome Trust/United Kingdom -- R01 AR054396/AR/NIAMS NIH HHS/ -- R01 GM095941/GM/NIGMS NIH HHS/ -- R01AR05439/AR/NIAMS NIH HHS/ -- R01GM095941/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1247-50. doi: 10.1126/science.1244689.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311692" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/*immunology/metabolism ; Cell Polarity ; Cells, Cultured ; Centrosome/metabolism ; *Cytotoxicity, Immunologic ; Hedgehog Proteins/*metabolism ; *Immunological Synapses ; Kruppel-Like Transcription Factors/genetics/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Immunological ; Neuropeptides/genetics/metabolism ; Receptors, Antigen, T-Cell/immunology/metabolism ; Receptors, Cell Surface/metabolism ; Receptors, G-Protein-Coupled/metabolism ; *Signal Transduction ; T-Lymphocytes, Cytotoxic/*immunology/metabolism ; rac1 GTP-Binding Protein/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-10-25
    Description: Although fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, are too small, or occur too rapidly to see clearly with existing tools. We crafted ultrathin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of volumes, often at subsecond intervals, at the diffraction limit and beyond. We applied this to systems spanning four orders of magnitude in space and time, including the diffusion of single transcription factor molecules in stem cell spheroids, the dynamic instability of mitotic microtubules, the immunological synapse, neutrophil motility in a 3D matrix, and embryogenesis in Caenorhabditis elegans and Drosophila melanogaster. The results provide a visceral reminder of the beauty and the complexity of living systems.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336192/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336192/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Bi-Chang -- Legant, Wesley R -- Wang, Kai -- Shao, Lin -- Milkie, Daniel E -- Davidson, Michael W -- Janetopoulos, Chris -- Wu, Xufeng S -- Hammer, John A 3rd -- Liu, Zhe -- English, Brian P -- Mimori-Kiyosue, Yuko -- Romero, Daniel P -- Ritter, Alex T -- Lippincott-Schwartz, Jennifer -- Fritz-Laylin, Lillian -- Mullins, R Dyche -- Mitchell, Diana M -- Bembenek, Joshua N -- Reymann, Anne-Cecile -- Bohme, Ralph -- Grill, Stephan W -- Wang, Jennifer T -- Seydoux, Geraldine -- Tulu, U Serdar -- Kiehart, Daniel P -- Betzig, Eric -- GM33830/GM/NIGMS NIH HHS/ -- R01 GM033830/GM/NIGMS NIH HHS/ -- R01GM080370/GM/NIGMS NIH HHS/ -- R01HD37047/HD/NICHD NIH HHS/ -- RM01-GM61010/GM/NIGMS NIH HHS/ -- T32 GM007445/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):1257998. doi: 10.1126/science.1257998. Epub 2014 Oct 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. ; Coleman Technologies, Incorporated, Newtown Square, PA 19073, USA. ; National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA. ; Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104, USA. ; Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. ; Optical Image Analysis Unit, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan. ; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA. ; Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA. Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, England, UK. ; Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA. ; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. ; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA. ; Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany. Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany. ; Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. ; Department of Biology, Duke University, Durham, NC 27708, USA. ; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. betzige@janelia.hhmi.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342811" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*embryology ; Cell Communication ; Drosophila melanogaster/*embryology ; Embryo, Nonmammalian/*ultrastructure ; Embryonic Stem Cells/ultrastructure ; Imaging, Three-Dimensional/*methods ; Mice ; Microscopy/*methods ; Molecular Imaging/*methods ; Spheroids, Cellular/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-03-07
    Description: Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, (13)CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on (13)CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, David T -- Gruen, Danielle S -- Lollar, Barbara Sherwood -- Hinrichs, Kai-Uwe -- Stewart, Lucy C -- Holden, James F -- Hristov, Alexander N -- Pohlman, John W -- Morrill, Penny L -- Konneke, Martin -- Delwiche, Kyle B -- Reeves, Eoghan P -- Sutcliffe, Chelsea N -- Ritter, Daniel J -- Seewald, Jeffrey S -- McIntosh, Jennifer C -- Hemond, Harold F -- Kubo, Michael D -- Cardace, Dawn -- Hoehler, Tori M -- Ono, Shuhei -- New York, N.Y. -- Science. 2015 Apr 24;348(6233):428-31. doi: 10.1126/science.aaa4326. Epub 2015 Mar 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. ; Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada. ; MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen D-28359, Germany. ; Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA. ; Department of Animal Science, Pennsylvania State University, University Park, PA 16802, USA. ; U.S. Geological Survey (USGS), Woods Hole Coastal and Marine Science Center, Woods Hole, MA 02543, USA. ; Department of Earth Sciences, Memorial University of Newfoundland, St John's, Newfoundland and Labrador A1B 3X5, Canada. ; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721, USA. ; Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. ; NASA Ames Research Center, Moffett Field, CA 94035, USA. ; Department of Geosciences, University of Rhode Island, Kingston, RI 02881, USA. ; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. sono@mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25745067" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Carbon Cycle ; Carbon Isotopes/chemistry ; Cattle ; Groundwater/chemistry ; Hydrogen/chemistry ; Methane/*biosynthesis/chemistry ; Methanomicrobiales/*metabolism ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1981-07-24
    Description: Microinfusion of 5-thioglucose into either the lateral or fourth cerebral ventricle caused increased feeding and hyperglycemia in rats when the cerebral aqueduct was unobstructed. If the aqueduct was obstructed and 5-thioglucose was infused into the fourth ventricle, increased feeding and hyperglycemia persisted, whereas feeding and hyperglycemia in response to lateral ventricle infusion were abolished. Drinking in response to infusion of angiotensin II into the lateral ventricle was not diminished by aqueduct obstruction. These results indicate that glucoreceptors that mediate feeding and hyperglycemia in response to cerebral glucoprivation are located in the caudal hindbrain and not in the hypothalamus where they have previously been sought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ritter, R C -- Slusser, P G -- Stone, S -- AM20035/AM/NIADDK NIH HHS/ -- New York, N.Y. -- Science. 1981 Jul 24;213(4506):451-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6264602" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/*metabolism ; Cerebral Ventricles/*physiology ; Energy Intake ; Feeding Behavior/*drug effects ; Glucose/*analogs & derivatives/metabolism/pharmacology ; Male ; Rats ; Receptors, Cell Surface/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1980-03-14
    Description: Fluorescent light induced a dose-dependent malignant transformation in mouse C3H10T1/2 cells. A plateau in the dose-response curve for transformation was correlated with that observed with ultraviolet light exposure. The similarity in the two dose-response patterns suggests that similar molecular processes may be involved in the induction of malignant transformation by the two types of radiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kennedy, A R -- Ritter, M A -- Little, J B -- New York, N.Y. -- Science. 1980 Mar 14;207(4436):1209-11.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7355282" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Survival/radiation effects ; Cell Transformation, Neoplastic/*radiation effects ; Cells, Cultured ; DNA/radiation effects ; Dose-Response Relationship, Radiation ; Embryo, Mammalian/radiation effects ; Fluorescence ; *Light ; Mice ; Pyrimidine Dimers/radiation effects ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...