ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-05-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barbosa, Andre Frainer -- England -- Nature. 2008 May 15;453(7193):280. doi: 10.1038/453280b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18480789" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere/*chemistry ; Brazil ; Carbon Dioxide/analysis ; *Conservation of Natural Resources ; Federal Government ; *Greenhouse Effect ; Methane/analysis ; Power Plants/*trends ; *Trees
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-01-16
    Description: We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the approximately 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080659/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080659/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carlton, Jane M -- Hirt, Robert P -- Silva, Joana C -- Delcher, Arthur L -- Schatz, Michael -- Zhao, Qi -- Wortman, Jennifer R -- Bidwell, Shelby L -- Alsmark, U Cecilia M -- Besteiro, Sebastien -- Sicheritz-Ponten, Thomas -- Noel, Christophe J -- Dacks, Joel B -- Foster, Peter G -- Simillion, Cedric -- Van de Peer, Yves -- Miranda-Saavedra, Diego -- Barton, Geoffrey J -- Westrop, Gareth D -- Muller, Sylke -- Dessi, Daniele -- Fiori, Pier Luigi -- Ren, Qinghu -- Paulsen, Ian -- Zhang, Hanbang -- Bastida-Corcuera, Felix D -- Simoes-Barbosa, Augusto -- Brown, Mark T -- Hayes, Richard D -- Mukherjee, Mandira -- Okumura, Cheryl Y -- Schneider, Rachel -- Smith, Alias J -- Vanacova, Stepanka -- Villalvazo, Maria -- Haas, Brian J -- Pertea, Mihaela -- Feldblyum, Tamara V -- Utterback, Terry R -- Shu, Chung-Li -- Osoegawa, Kazutoyo -- de Jong, Pieter J -- Hrdy, Ivan -- Horvathova, Lenka -- Zubacova, Zuzana -- Dolezal, Pavel -- Malik, Shehre-Banoo -- Logsdon, John M Jr -- Henze, Katrin -- Gupta, Arti -- Wang, Ching C -- Dunne, Rebecca L -- Upcroft, Jacqueline A -- Upcroft, Peter -- White, Owen -- Salzberg, Steven L -- Tang, Petrus -- Chiu, Cheng-Hsun -- Lee, Ying-Shiung -- Embley, T Martin -- Coombs, Graham H -- Mottram, Jeremy C -- Tachezy, Jan -- Fraser-Liggett, Claire M -- Johnson, Patricia J -- 072031/Wellcome Trust/United Kingdom -- G0000508/Medical Research Council/United Kingdom -- G0000508(56841)/Medical Research Council/United Kingdom -- G9722968/Medical Research Council/United Kingdom -- G9722968(65078)/Medical Research Council/United Kingdom -- R01 LM006845/LM/NLM NIH HHS/ -- R01 LM006845-08/LM/NLM NIH HHS/ -- R01 LM007938/LM/NLM NIH HHS/ -- R01 LM007938-04/LM/NLM NIH HHS/ -- U01 AI050913/AI/NIAID NIH HHS/ -- U01 AI050913-01A1/AI/NIAID NIH HHS/ -- U01 AI050913-02/AI/NIAID NIH HHS/ -- UO1 AI50913-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):207-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Research, 9712 Medical Research Drive, Rockville, MD 20850, USA. jane.carlton@med.nyu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218520" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport/genetics ; DNA Transposable Elements ; DNA, Protozoan/genetics ; Gene Transfer, Horizontal ; Genes, Protozoan ; *Genome, Protozoan ; Humans ; Hydrogen/metabolism ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Data ; Multigene Family ; Organelles/metabolism ; Oxidative Stress/genetics ; Peptide Hydrolases/genetics/metabolism ; Protozoan Proteins/genetics/physiology ; RNA Processing, Post-Transcriptional ; Repetitive Sequences, Nucleic Acid ; *Sequence Analysis, DNA ; Sexually Transmitted Diseases/parasitology ; Trichomonas Infections/parasitology/transmission ; Trichomonas vaginalis/cytology/*genetics/metabolism/pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-04-25
    Description: The imprints of domestication and breed development on the genomes of livestock likely differ from those of companion animals. A deep draft sequence assembly of shotgun reads from a single Hereford female and comparative sequences sampled from six additional breeds were used to develop probes to interrogate 37,470 single-nucleotide polymorphisms (SNPs) in 497 cattle from 19 geographically and biologically diverse breeds. These data show that cattle have undergone a rapid recent decrease in effective population size from a very large ancestral population, possibly due to bottlenecks associated with domestication, selection, and breed formation. Domestication and artificial selection appear to have left detectable signatures of selection within the cattle genome, yet the current levels of diversity within breeds are at least as great as exists within humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735092/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735092/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bovine HapMap Consortium -- Gibbs, Richard A -- Taylor, Jeremy F -- Van Tassell, Curtis P -- Barendse, William -- Eversole, Kellye A -- Gill, Clare A -- Green, Ronnie D -- Hamernik, Debora L -- Kappes, Steven M -- Lien, Sigbjorn -- Matukumalli, Lakshmi K -- McEwan, John C -- Nazareth, Lynne V -- Schnabel, Robert D -- Weinstock, George M -- Wheeler, David A -- Ajmone-Marsan, Paolo -- Boettcher, Paul J -- Caetano, Alexandre R -- Garcia, Jose Fernando -- Hanotte, Olivier -- Mariani, Paola -- Skow, Loren C -- Sonstegard, Tad S -- Williams, John L -- Diallo, Boubacar -- Hailemariam, Lemecha -- Martinez, Mario L -- Morris, Chris A -- Silva, Luiz O C -- Spelman, Richard J -- Mulatu, Woudyalew -- Zhao, Keyan -- Abbey, Colette A -- Agaba, Morris -- Araujo, Flabio R -- Bunch, Rowan J -- Burton, James -- Gorni, Chiara -- Olivier, Hanotte -- Harrison, Blair E -- Luff, Bill -- Machado, Marco A -- Mwakaya, Joel -- Plastow, Graham -- Sim, Warren -- Smith, Timothy -- Thomas, Merle B -- Valentini, Alessio -- Williams, Paul -- Womack, James -- Woolliams, John A -- Liu, Yue -- Qin, Xiang -- Worley, Kim C -- Gao, Chuan -- Jiang, Huaiyang -- Moore, Stephen S -- Ren, Yanru -- Song, Xing-Zhi -- Bustamante, Carlos D -- Hernandez, Ryan D -- Muzny, Donna M -- Patil, Shobha -- San Lucas, Anthony -- Fu, Qing -- Kent, Matthew P -- Vega, Richard -- Matukumalli, Aruna -- McWilliam, Sean -- Sclep, Gert -- Bryc, Katarzyna -- Choi, Jungwoo -- Gao, Hong -- Grefenstette, John J -- Murdoch, Brenda -- Stella, Alessandra -- Villa-Angulo, Rafael -- Wright, Mark -- Aerts, Jan -- Jann, Oliver -- Negrini, Riccardo -- Goddard, Mike E -- Hayes, Ben J -- Bradley, Daniel G -- Barbosa da Silva, Marcos -- Lau, Lilian P L -- Liu, George E -- Lynn, David J -- Panzitta, Francesca -- Dodds, Ken G -- R01 GM083606/GM/NIGMS NIH HHS/ -- R01 GM083606-02/GM/NIGMS NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 24;324(5926):528-32. doi: 10.1126/science.1167936.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19390050" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breeding ; Cattle/*genetics ; Female ; Gene Frequency ; *Genetic Variation ; *Genome ; Male ; Molecular Sequence Data ; Mutation ; *Polymorphism, Single Nucleotide ; Population Density
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-08-16
    Description: Stem cells reside in specialized niches that provide signals required for their maintenance and division. Tissue-extrinsic signals can also modify stem cell activity, although this is poorly understood. Here, we report that neural-derived Drosophila insulin-like peptides (DILPs) directly regulate germline stem cell division rate, demonstrating that signals mediating the ovarian response to nutritional input can modify stem cell activity in a niche-independent manner. We also reveal a crucial direct role of DILPs in controlling germline cyst growth and vitellogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉LaFever, Leesa -- Drummond-Barbosa, Daniela -- GM 069875/GM/NIGMS NIH HHS/ -- R01 GM069875/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 12;309(5737):1071-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4120B Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8240, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16099985" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division ; Cell Proliferation ; Drosophila/cytology/genetics/*physiology ; Drosophila Proteins/genetics/*physiology ; Female ; Food ; Germ Cells/*cytology ; Insulin/*physiology ; Mutation ; Ovarian Follicle/cytology/physiology ; Ovary/cytology/physiology ; Peptides/physiology ; Receptor Protein-Tyrosine Kinases/genetics/physiology ; *Signal Transduction ; Stem Cells/*cytology ; Vitellogenesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-06-07
    Description: Previous investigations of the core gene regulatory circuitry that controls the pluripotency of embryonic stem (ES) cells have largely focused on the roles of transcription, chromatin and non-coding RNA regulators. Alternative splicing represents a widely acting mode of gene regulation, yet its role in regulating ES-cell pluripotency and differentiation is poorly understood. Here we identify the muscleblind-like RNA binding proteins, MBNL1 and MBNL2, as conserved and direct negative regulators of a large program of cassette exon alternative splicing events that are differentially regulated between ES cells and other cell types. Knockdown of MBNL proteins in differentiated cells causes switching to an ES-cell-like alternative splicing pattern for approximately half of these events, whereas overexpression of MBNL proteins in ES cells promotes differentiated-cell-like alternative splicing patterns. Among the MBNL-regulated events is an ES-cell-specific alternative splicing switch in the forkhead family transcription factor FOXP1 that controls pluripotency. Consistent with a central and negative regulatory role for MBNL proteins in pluripotency, their knockdown significantly enhances the expression of key pluripotency genes and the formation of induced pluripotent stem cells during somatic cell reprogramming.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933998/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933998/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Hong -- Irimia, Manuel -- Ross, P Joel -- Sung, Hoon-Ki -- Alipanahi, Babak -- David, Laurent -- Golipour, Azadeh -- Gabut, Mathieu -- Michael, Iacovos P -- Nachman, Emil N -- Wang, Eric -- Trcka, Dan -- Thompson, Tadeo -- O'Hanlon, Dave -- Slobodeniuc, Valentina -- Barbosa-Morais, Nuno L -- Burge, Christopher B -- Moffat, Jason -- Frey, Brendan J -- Nagy, Andras -- Ellis, James -- Wrana, Jeffrey L -- Blencowe, Benjamin J -- R01 HG002439/HG/NHGRI NIH HHS/ -- R33 MH087908/MH/NIMH NIH HHS/ -- R33MH087908/MH/NIMH NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 Jun 13;498(7453):241-5. doi: 10.1038/nature12270. Epub 2013 Jun 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23739326" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing/genetics ; Amino Acid Motifs ; Animals ; Cell Differentiation/genetics ; Cell Line ; *Cellular Reprogramming ; DNA-Binding Proteins/chemistry/deficiency/genetics/*metabolism ; Embryonic Stem Cells/*cytology/*metabolism ; Fibroblasts/cytology/metabolism ; Forkhead Transcription Factors/metabolism ; Gene Knockdown Techniques ; HEK293 Cells ; HeLa Cells ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Kinetics ; Mice ; RNA-Binding Proteins/chemistry/genetics/*metabolism ; Repressor Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-01
    Description: Haematopoiesis is a developmental cascade that generates all blood cell lineages in health and disease. This process relies on quiescent haematopoietic stem cells capable of differentiating, self renewing and expanding upon physiological demand. However, the mechanisms that regulate haematopoietic stem cell homeostasis and function remain largely unknown. Here we show that the neurotrophic factor receptor RET (rearranged during transfection) drives haematopoietic stem cell survival, expansion and function. We find that haematopoietic stem cells express RET and that its neurotrophic factor partners are produced in the haematopoietic stem cell environment. Ablation of Ret leads to impaired survival and reduced numbers of haematopoietic stem cells with normal differentiation potential, but loss of cell-autonomous stress response and reconstitution potential. Strikingly, RET signals provide haematopoietic stem cells with critical Bcl2 and Bcl2l1 surviving cues, downstream of p38 mitogen-activated protein (MAP) kinase and cyclic-AMP-response element binding protein (CREB) activation. Accordingly, enforced expression of RET downstream targets, Bcl2 or Bcl2l1, is sufficient to restore the activity of Ret null progenitors in vivo. Activation of RET results in improved haematopoietic stem cell survival, expansion and in vivo transplantation efficiency. Remarkably, human cord-blood progenitor expansion and transplantation is also improved by neurotrophic factors, opening the way for exploration of RET agonists in human haematopoietic stem cell transplantation. Our work shows that neurotrophic factors are novel components of the haematopoietic stem cell microenvironment, revealing that haematopoietic stem cells and neurons are regulated by similar signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fonseca-Pereira, Diogo -- Arroz-Madeira, Silvia -- Rodrigues-Campos, Mariana -- Barbosa, Ines A M -- Domingues, Rita G -- Bento, Teresa -- Almeida, Afonso R M -- Ribeiro, Helder -- Potocnik, Alexandre J -- Enomoto, Hideki -- Veiga-Fernandes, Henrique -- England -- Nature. 2014 Oct 2;514(7520):98-101. doi: 10.1038/nature13498. Epub 2014 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Avenida Professor Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal [2]. ; Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Avenida Professor Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal. ; 1] Division of Molecular Immunology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK [2] Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK. ; 1] Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan [2] Graduate School of Medicine, Kobe University7-5-1 Kusunoki-cho, Chuo-ku, Kobe City, Hyogo 650-0017, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079320" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Survival ; Cyclic AMP Response Element-Binding Protein/metabolism ; Enzyme Activation ; Female ; Hematopoiesis ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*cytology/*metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Nerve Growth Factors/*metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Proto-Oncogene Proteins c-ret/deficiency/genetics/*metabolism ; Signal Transduction ; Stem Cell Niche ; bcl-X Protein/metabolism ; p38 Mitogen-Activated Protein Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-29
    Description: The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORgammat. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van de Pavert, Serge A -- Ferreira, Manuela -- Domingues, Rita G -- Ribeiro, Helder -- Molenaar, Rosalie -- Moreira-Santos, Lara -- Almeida, Francisca F -- Ibiza, Sales -- Barbosa, Ines -- Goverse, Gera -- Labao-Almeida, Carlos -- Godinho-Silva, Cristina -- Konijn, Tanja -- Schooneman, Dennis -- O'Toole, Tom -- Mizee, Mark R -- Habani, Yasmin -- Haak, Esther -- Santori, Fabio R -- Littman, Dan R -- Schulte-Merker, Stefan -- Dzierzak, Elaine -- Simas, J Pedro -- Mebius, Reina E -- Veiga-Fernandes, Henrique -- R01 AI080885/AI/NIAID NIH HHS/ -- R01AI080885/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Apr 3;508(7494):123-7. doi: 10.1038/nature13158. Epub 2014 Mar 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands [2] Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands. [3]. ; 1] Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal [2]. ; Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal. ; Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands. ; Erasmus Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands. ; Howard Hughes Medical Institute, Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA. ; Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands. ; 1] Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081BT Amsterdam, The Netherlands [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670648" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/drug effects/immunology ; Diet ; Female ; Fetus/drug effects/*immunology ; Immunity, Innate/drug effects/*immunology ; Lymphoid Tissue/cytology/drug effects/embryology/immunology ; Mice ; Mice, Inbred C57BL ; Pregnancy ; Prenatal Exposure Delayed Effects/*immunology ; Receptors, Retinoic Acid/metabolism ; Signal Transduction/drug effects ; Stem Cells/cytology/drug effects/immunology ; Tretinoin/administration & dosage/*immunology/metabolism/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-09-13
    Description: Homologous sets of transcription factors direct conserved tissue-specific gene expression, yet transcription factor-binding events diverge rapidly between closely related species. We used hepatocytes from an aneuploid mouse strain carrying human chromosome 21 to determine, on a chromosomal scale, whether interspecies differences in transcriptional regulation are primarily directed by human genetic sequence or mouse nuclear environment. Virtually all transcription factor-binding locations, landmarks of transcription initiation, and the resulting gene expression observed in human hepatocytes were recapitulated across the entire human chromosome 21 in the mouse hepatocyte nucleus. Thus, in homologous tissues, genetic sequence is largely responsible for directing transcriptional programs; interspecies differences in epigenetic machinery, cellular environment, and transcription factors themselves play secondary roles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717767/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717767/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, Michael D -- Barbosa-Morais, Nuno L -- Schmidt, Dominic -- Conboy, Caitlin M -- Vanes, Lesley -- Tybulewicz, Victor L J -- Fisher, Elizabeth M C -- Tavare, Simon -- Odom, Duncan T -- 080174/Wellcome Trust/United Kingdom -- 15603/Cancer Research UK/United Kingdom -- 202218/European Research Council/International -- A15603/Cancer Research UK/United Kingdom -- G0601056/Medical Research Council/United Kingdom -- MC_U117527252/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2008 Oct 17;322(5900):434-8. doi: 10.1126/science.1160930. Epub 2008 Sep 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18787134" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Nucleus/metabolism ; Chromatin Assembly and Disassembly ; Chromatin Immunoprecipitation ; Chromosomes, Human, Pair 21/*genetics/metabolism ; Disease Models, Animal ; Down Syndrome/genetics ; *Gene Expression Regulation ; Hepatocyte Nuclear Factors/*metabolism ; Hepatocytes/*metabolism ; Histones/metabolism ; Humans ; Methylation ; Mice ; Oligonucleotide Array Sequence Analysis ; *Regulatory Sequences, Nucleic Acid ; Species Specificity ; Transcription Initiation Site ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-12-22
    Description: How species with similar repertoires of protein-coding genes differ so markedly at the phenotypic level is poorly understood. By comparing organ transcriptomes from vertebrate species spanning ~350 million years of evolution, we observed significant differences in alternative splicing complexity between vertebrate lineages, with the highest complexity in primates. Within 6 million years, the splicing profiles of physiologically equivalent organs diverged such that they are more strongly related to the identity of a species than they are to organ type. Most vertebrate species-specific splicing patterns are cis-directed. However, a subset of pronounced splicing changes are predicted to remodel protein interactions involving trans-acting regulators. These events likely further contributed to the diversification of splicing and other transcriptomic changes that underlie phenotypic differences among vertebrate species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barbosa-Morais, Nuno L -- Irimia, Manuel -- Pan, Qun -- Xiong, Hui Y -- Gueroussov, Serge -- Lee, Leo J -- Slobodeniuc, Valentina -- Kutter, Claudia -- Watt, Stephen -- Colak, Recep -- Kim, TaeHyung -- Misquitta-Ali, Christine M -- Wilson, Michael D -- Kim, Philip M -- Odom, Duncan T -- Frey, Brendan J -- Blencowe, Benjamin J -- 15603/Cancer Research UK/United Kingdom -- A15603/Cancer Research UK/United Kingdom -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2012 Dec 21;338(6114):1587-93. doi: 10.1126/science.1230612.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23258890" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Animals ; Biological Evolution ; Chickens/genetics ; *Evolution, Molecular ; Exons ; Introns ; Lizards/genetics ; Mice/genetics ; Mice, Inbred C57BL/genetics ; Opossums/genetics ; Phenotype ; Platypus/genetics ; Primates/genetics ; RNA Splice Sites ; Regulatory Sequences, Ribonucleic Acid ; Species Specificity ; *Transcriptome ; Vertebrates/*genetics ; Xenopus/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-17
    Description: Domoic acid (DA) is a naturally occurring neurotoxin known to harm marine animals. DA-producing algal blooms are increasing in size and frequency. Although chronic exposure is known to produce brain lesions, the influence of DA toxicosis on behavior in wild animals is unknown. We showed, in a large sample of wild sea lions, that spatial memory deficits are predicted by the extent of right dorsal hippocampal lesions related to natural exposure to DA and that exposure also disrupts hippocampal-thalamic brain networks. Because sea lions are dynamic foragers that rely on flexible navigation, impaired spatial memory may affect survival in the wild.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cook, Peter F -- Reichmuth, Colleen -- Rouse, Andrew A -- Libby, Laura A -- Dennison, Sophie E -- Carmichael, Owen T -- Kruse-Elliott, Kris T -- Bloom, Josh -- Singh, Baljeet -- Fravel, Vanessa A -- Barbosa, Lorraine -- Stuppino, Jim J -- Van Bonn, William G -- Gulland, Frances M D -- Ranganath, Charan -- New York, N.Y. -- Science. 2015 Dec 18;350(6267):1545-7. doi: 10.1126/science.aac5675. Epub 2015 Dec 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neuropolicy, Emory University, Atlanta, GA 30322, USA. Pinniped Cognition and Sensory Systems Laboratory, Institute of Marine Sciences, University of California-Santa Cruz, Santa Cruz, CA 95060, USA. pfcook@emory.edu. ; Pinniped Cognition and Sensory Systems Laboratory, Institute of Marine Sciences, University of California-Santa Cruz, Santa Cruz, CA 95060, USA. ; Dynamic Memory Lab, Center for Neuroscience, University of California-Davis, Davis, CA 95618, USA. ; AnimalScan Advanced Veterinary Imaging, Redwood City, CA 94063, USA. ; Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA. ; The Marine Mammal Center, Sausalito, CA 94965, USA. ; Shedd Aquarium, Chicago, IL 60605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26668068" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Eutrophication ; Hippocampus/*drug effects/physiology ; Kainic Acid/*analogs & derivatives/metabolism/toxicity ; Marine Toxins/*toxicity ; Neurotoxins/metabolism/*toxicity ; Sea Lions/*physiology ; Spatial Memory/*drug effects ; Thalamus/drug effects/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...