ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-03-13
    Description: Chromosome fragmentation is a hallmark of apoptosis, conserved in diverse organisms. In mammals, caspases activate apoptotic chromosome fragmentation by cleaving and inactivating an apoptotic nuclease inhibitor. We report that inactivation of the Caenorhabditis elegans dcr-1 gene, which encodes the Dicer ribonuclease important for processing of small RNAs, compromises apoptosis and blocks apoptotic chromosome fragmentation. DCR-1 was cleaved by the CED-3 caspase to generate a C-terminal fragment with deoxyribonuclease activity, which produced 3' hydroxyl DNA breaks on chromosomes and promoted apoptosis. Thus, caspase-mediated activation of apoptotic DNA degradation is conserved. DCR-1 functions in fragmenting chromosomal DNA during apoptosis, in addition to processing of small RNAs, and undergoes a protease-mediated conversion from a ribonuclease to a deoxyribonuclease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313557/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313557/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakagawa, Akihisa -- Shi, Yong -- Kage-Nakadai, Eriko -- Mitani, Shohei -- Xue, Ding -- R01 GM059083/GM/NIGMS NIH HHS/ -- R01 GM079097/GM/NIGMS NIH HHS/ -- R01 GM59083/GM/NIGMS NIH HHS/ -- R01 GM79097/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 16;328(5976):327-34. doi: 10.1126/science.1182374. Epub 2010 Mar 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20223951" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; *Apoptosis ; Caenorhabditis elegans/cytology/*enzymology/genetics/physiology ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Caspases/genetics/*metabolism ; Catalytic Domain ; *DNA Fragmentation ; DNA, Helminth/*metabolism ; Deoxyribonucleases/*metabolism ; In Situ Nick-End Labeling ; RNA Interference ; RNA, Double-Stranded/metabolism ; RNA, Helminth/metabolism ; Recombinant Fusion Proteins/metabolism ; Ribonuclease III/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-12-04
    Description: During apoptosis, phosphatidylserine, which is normally restricted to the inner leaflet of the plasma membrane, is exposed on the surface of apoptotic cells and has been suggested to act as an "eat-me" signal to trigger phagocytosis. It is unclear how phagocytes recognize phosphatidylserine. Recently, a putative phosphatidylserine receptor (PSR) was identified and proposed to mediate recognition of phosphatidylserine and phagocytosis. We report that psr-1, the Caenorhabditis elegans homolog of PSR, is important for cell corpse engulfment. In vitro PSR-1 binds preferentially phosphatidylserine or cells with exposed phosphatidylserine. In C. elegans, PSR-1 acts in the same cell corpse engulfment pathway mediated by intracellular signaling molecules CED-2 (homologous to the human CrkII protein), CED-5 (DOCK180), CED-10 (Rac GTPase), and CED-12 (ELMO), possibly through direct interaction with CED-5 and CED-12. Our findings suggest that PSR-1 is likely an upstream receptor for the signaling pathway containing CED-2, CED-5, CED-10, and CED-12 proteins and plays an important role in recognizing phosphatidylserine during phagocytosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xiaochen -- Wu, Yi-Chun -- Fadok, Valerie A -- Lee, Ming-Chia -- Gengyo-Ando, Keiko -- Cheng, Li-Chun -- Ledwich, Duncan -- Hsu, Pei-Ken -- Chen, Jia-Yun -- Chou, Bin-Kuan -- Henson, Peter -- Mitani, Shohei -- Xue, Ding -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1563-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645848" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; *Apoptosis ; Caenorhabditis elegans/cytology/embryology/metabolism/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Carrier Proteins/genetics/*metabolism ; *Cytoskeletal Proteins ; Embryo, Nonmammalian/cytology/metabolism ; Embryonic Development ; Humans ; Jumonji Domain-Containing Histone Demethylases ; Membrane Proteins/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; *Phagocytosis ; Phosphatidylserines/metabolism ; Protein Binding ; Receptors, Cell Surface/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Recombinant Proteins/metabolism ; Signal Transduction ; rac GTP-Binding Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-04-26
    Description: The asymmetrical distribution of phospholipids on the plasma membrane is critical for maintaining cell integrity and physiology and for regulating intracellular signaling and important cellular events such as clearance of apoptotic cells. How phospholipid asymmetry is established and maintained is not fully understood. We report that the Caenorhabditis elegans P-type adenosine triphosphatase homolog, TAT-1, is critical for maintaining cell surface asymmetry of phosphatidylserine (PS). In animals deficient in tat-1, PS is abnormally exposed on the cell surface, and normally living cells are randomly lost through a mechanism dependent on PSR-1, a PS-recognizing phagocyte receptor, and CED-1, which contributes to recognition and engulfment of apoptotic cells. Thus, tat-1 appears to function in preventing appearance of PS in the outer leaflet of plasma membrane, and ectopic exposure of PS on the cell surface may result in removal of living cells by neighboring phagocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Darland-Ransom, Monica -- Wang, Xiaochen -- Sun, Chun-Ling -- Mapes, James -- Gengyo-Ando, Keiko -- Mitani, Shohei -- Xue, Ding -- R01 GM59083/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 25;320(5875):528-31. doi: 10.1126/science.1155847.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18436785" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Apoptosis ; Caenorhabditis elegans/cytology/genetics/*metabolism ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Cell Membrane/*metabolism ; Germ Cells/cytology/metabolism ; Muscle Cells/cytology/metabolism ; Neurons/cytology/metabolism ; Phagocytosis ; Phosphatidylserines/*metabolism ; Phospholipid Transfer Proteins/genetics/*metabolism ; RNA Interference ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...