ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (7)
  • Female  (4)
  • *Fossils  (2)
  • Nature Publishing Group (NPG)  (11)
  • Wiley
  • 1
    Publication Date: 2008-10-04
    Description: HIV has advanced from high-risk groups such as intravenous drug users to some in the general population, according to comprehensive new data from the south of China. What needs to be done to halt its spread?〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Lin -- Jia, Manhong -- Ma, Yanling -- Yang, Li -- Chen, Zhiwei -- Ho, David D -- Jiang, Yan -- Zhang, Linqi -- England -- Nature. 2008 Oct 2;455(7213):609-11. doi: 10.1038/455609a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yunnan Center for Disease Control and Prevention, Yunnan, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18833270" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; China/epidemiology ; Ethnic Groups/statistics & numerical data ; Female ; HIV Infections/*epidemiology/prevention & control/transmission/virology ; HIV-1/genetics ; Humans ; Male ; Pregnancy ; Prevalence ; Prostitution/statistics & numerical data ; Sentinel Surveillance ; Sex Ratio ; Substance Abuse, Intravenous/epidemiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-02-19
    Description: Cytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with transcription levels. However, plants have different types of methylation controlled by different genetic pathways, and detailed information on the methylation status of each cytosine in any given genome is lacking. To this end, we generated a map at single-base-pair resolution of methylated cytosines for Arabidopsis, by combining bisulphite treatment of genomic DNA with ultra-high-throughput sequencing using the Illumina 1G Genome Analyser and Solexa sequencing technology. This approach, termed BS-Seq, unlike previous microarray-based methods, allows one to sensitively measure cytosine methylation on a genome-wide scale within specific sequence contexts. Here we describe methylation on previously inaccessible components of the genome and analyse the DNA methylation sequence composition and distribution. We also describe the effect of various DNA methylation mutants on genome-wide methylation patterns, and demonstrate that our newly developed library construction and computational methods can be applied to large genomes such as that of mouse.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2377394/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2377394/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cokus, Shawn J -- Feng, Suhua -- Zhang, Xiaoyu -- Chen, Zugen -- Merriman, Barry -- Haudenschild, Christian D -- Pradhan, Sriharsa -- Nelson, Stanley F -- Pellegrini, Matteo -- Jacobsen, Steven E -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Mar 13;452(7184):215-9. doi: 10.1038/nature06745. Epub 2008 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18278030" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Animals ; Arabidopsis/*genetics ; Base Sequence ; Computational Biology ; Cytosine/metabolism ; *DNA Methylation ; Gene Expression Regulation, Plant/genetics ; Gene Library ; Genome, Plant/*genetics ; Mice ; Mutation/genetics ; Promoter Regions, Genetic/genetics ; Reproducibility of Results ; Sequence Analysis, DNA/*methods ; Sulfites/*metabolism ; Uracil/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-01-18
    Description: The RIG-like helicase (RLH) family of intracellular receptors detect viral nucleic acid and signal through the mitochondrial antiviral signalling adaptor MAVS (also known as Cardif, VISA and IPS-1) during a viral infection. MAVS activation leads to the rapid production of antiviral cytokines, including type 1 interferons. Although MAVS is vital to antiviral immunity, its regulation from within the mitochondria remains unknown. Here we describe human NLRX1, a highly conserved nucleotide-binding domain (NBD)- and leucine-rich-repeat (LRR)-containing family member (known as NLR) that localizes to the mitochondrial outer membrane and interacts with MAVS. Expression of NLRX1 results in the potent inhibition of RLH- and MAVS-mediated interferon-beta promoter activity and in the disruption of virus-induced RLH-MAVS interactions. Depletion of NLRX1 with small interference RNA promotes virus-induced type I interferon production and decreases viral replication. This work identifies NLRX1 as a check against mitochondrial antiviral responses and represents an intersection of three ancient cellular processes: NLR signalling, intracellular virus detection and the use of mitochondria as a platform for anti-pathogen signalling. This represents a conceptual advance, in that NLRX1 is a modulator of pathogen-associated molecular pattern receptors rather than a receptor, and identifies a key therapeutic target for enhancing antiviral responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, Chris B -- Bergstralh, Daniel T -- Duncan, Joseph A -- Lei, Yu -- Morrison, Thomas E -- Zimmermann, Albert G -- Accavitti-Loper, Mary A -- Madden, Victoria J -- Sun, Lijun -- Ye, Zhengmao -- Lich, John D -- Heise, Mark T -- Chen, Zhijian -- Ting, Jenny P-Y -- England -- Nature. 2008 Jan 31;451(7178):573-7. doi: 10.1038/nature06501. Epub 2008 Jan 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology-Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18200010" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/antagonists & inhibitors/metabolism ; Animals ; Cell Line ; Cloning, Molecular ; Computational Biology ; Humans ; Interferon-beta/biosynthesis/genetics/metabolism ; Mice ; Mitochondria/*immunology/*metabolism ; Mitochondrial Membranes/metabolism ; Mitochondrial Proteins/genetics/*metabolism ; NF-kappa B/metabolism ; Protein Binding ; Protein Transport ; RNA, Small Interfering/genetics/metabolism ; Signal Transduction ; Virus Replication ; Viruses/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-02-13
    Description: The first recurrent translocation event in prostate cancer has been recently described; it results in the translocation of an ETS (E26 transformation specific) transcription factor (ERG or ETV1) to the TMPRSS2 promoter region, which contains androgen responsive elements. The TMPRSS2:ERG genetic rearrangement has been reported to occur in approximately 40% of primary prostate tumours (ETV1 genetic rearrangements occur at a much lower frequency), and it results in the aberrant androgen-regulated expression of ERG. Tomlins et al. concluded that ETS genetic rearrangements are sufficient to initiate prostate neoplasia. However, here we show that ETS genetic rearrangements may in fact represent progression events rather than initiation events in prostate tumorigenesis. To this end, we demonstrate that the prostate-specific overexpression of ERG does not initiate prostate tumorigenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967456/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967456/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carver, Brett S -- Tran, Jennifer -- Chen, Zhenbang -- Carracedo-Perez, Arkaitz -- Alimonti, Andrea -- Nardella, Caterina -- Gopalan, Anuradha -- Scardino, Peter T -- Cordon-Cardo, Carlos -- Gerald, William -- Pandolfi, Pier Paolo -- P50 CA092629/CA/NCI NIH HHS/ -- P50 CA092629-10/CA/NCI NIH HHS/ -- R01 CA082328/CA/NCI NIH HHS/ -- R01 CA082328-12/CA/NCI NIH HHS/ -- R01 MD004038/MD/NIMHD NIH HHS/ -- U01 CA084292/CA/NCI NIH HHS/ -- U01 CA084292-10/CA/NCI NIH HHS/ -- England -- Nature. 2009 Feb 12;457(7231):E1; discussion E2-3. doi: 10.1038/nature07738.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Biology and Genetics Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19212347" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Transformation, Neoplastic/*genetics/metabolism/pathology ; DNA-Binding Proteins/genetics ; Disease Progression ; Gene Expression ; Male ; Mice ; Mice, Transgenic ; Oncogene Proteins/genetics/metabolism ; Prostatic Neoplasms/*genetics/metabolism ; Transcription Factors/genetics ; *Translocation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-12-18
    Description: In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1-3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells E2f1-3 function in a complex with Rb as repressors to silence E2f targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2f1-3 from repressors to activators, leading to the superactivation of E2f responsive targets and ectopic cell divisions. Loss of E2f1-3 completely suppressed these phenotypes caused by Rb deficiency. This work contextualizes the activator versus repressor functions of E2f1-3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806193/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806193/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chong, Jean-Leon -- Wenzel, Pamela L -- Saenz-Robles, M Teresa -- Nair, Vivek -- Ferrey, Antoney -- Hagan, John P -- Gomez, Yorman M -- Sharma, Nidhi -- Chen, Hui-Zi -- Ouseph, Madhu -- Wang, Shu-Huei -- Trikha, Prashant -- Culp, Brian -- Mezache, Louise -- Winton, Douglas J -- Sansom, Owen J -- Chen, Danian -- Bremner, Rod -- Cantalupo, Paul G -- Robinson, Michael L -- Pipas, James M -- Leone, Gustavo -- 5 T32 CA106196-04/CA/NCI NIH HHS/ -- CA098956/CA/NCI NIH HHS/ -- P01CA097189/CA/NCI NIH HHS/ -- R01 CA098956/CA/NCI NIH HHS/ -- R01 CA098956-06A2/CA/NCI NIH HHS/ -- R01CA82259/CA/NCI NIH HHS/ -- R01CA85619/CA/NCI NIH HHS/ -- R01HD04470/HD/NICHD NIH HHS/ -- England -- Nature. 2009 Dec 17;462(7275):930-4. doi: 10.1038/nature08677.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016602" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Apoptosis ; Cell Cycle/genetics/physiology ; *Cell Differentiation ; Cell Proliferation ; E2F Transcription Factors/deficiency/genetics/*metabolism ; E2F1 Transcription Factor/deficiency/genetics/metabolism ; E2F2 Transcription Factor/deficiency/genetics/metabolism ; E2F3 Transcription Factor/deficiency/genetics/metabolism ; Embryo, Mammalian/cytology/metabolism ; Embryonic Stem Cells/*cytology/*metabolism ; Female ; *Gene Expression Regulation ; Intestine, Small/cytology/metabolism ; Mice ; Mice, Transgenic ; Repressor Proteins/deficiency/genetics/*metabolism ; Retinoblastoma Protein/deficiency/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-03-20
    Description: Cellular senescence has been recently shown to have an important role in opposing tumour initiation and promotion. Senescence induced by oncogenes or by loss of tumour suppressor genes is thought to critically depend on induction of the p19(Arf)-p53 pathway. The Skp2 E3-ubiquitin ligase can act as a proto-oncogene and its aberrant overexpression is frequently observed in human cancers. Here we show that although Skp2 inactivation on its own does not induce cellular senescence, aberrant proto-oncogenic signals as well as inactivation of tumour suppressor genes do trigger a potent, tumour-suppressive senescence response in mice and cells devoid of Skp2. Notably, Skp2 inactivation and oncogenic-stress-driven senescence neither elicit activation of the p19(Arf)-p53 pathway nor DNA damage, but instead depend on Atf4, p27 and p21. We further demonstrate that genetic Skp2 inactivation evokes cellular senescence even in oncogenic conditions in which the p19(Arf)-p53 response is impaired, whereas a Skp2-SCF complex inhibitor can trigger cellular senescence in p53/Pten-deficient cells and tumour regression in preclinical studies. Our findings therefore provide proof-of-principle evidence that pharmacological inhibition of Skp2 may represent a general approach for cancer prevention and therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928066/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928066/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Hui-Kuan -- Chen, Zhenbang -- Wang, Guocan -- Nardella, Caterina -- Lee, Szu-Wei -- Chan, Chia-Hsin -- Yang, Wei-Lei -- Wang, Jing -- Egia, Ainara -- Nakayama, Keiichi I -- Cordon-Cardo, Carlos -- Teruya-Feldstein, Julie -- Pandolfi, Pier Paolo -- R01 CA082328/CA/NCI NIH HHS/ -- R01 CA082328-13/CA/NCI NIH HHS/ -- R01 MD004038/MD/NIMHD NIH HHS/ -- England -- Nature. 2010 Mar 18;464(7287):374-9. doi: 10.1038/nature08815.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Biology and Genetics Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20237562" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 4/metabolism ; Adenovirus E1A Proteins/genetics/metabolism ; Animals ; *Cell Aging/drug effects ; *Cell Transformation, Neoplastic/drug effects ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16/deficiency/genetics/metabolism ; Cyclin-Dependent Kinase Inhibitor p21/metabolism ; Cyclin-Dependent Kinase Inhibitor p27/metabolism ; Fibroblasts ; Male ; Mice ; PTEN Phosphohydrolase/deficiency/genetics/metabolism ; Prostate/cytology/metabolism ; Prostatic Neoplasms/drug therapy/pathology/prevention & control ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; S-Phase Kinase-Associated Proteins/antagonists & inhibitors/genetics/*metabolism ; SKP Cullin F-Box Protein Ligases/metabolism ; Tumor Suppressor Protein p53/deficiency/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-02-19
    Description: The deep-water Avalon biota (about 579 to 565 million years old) is often regarded as the earliest-known fossil assemblage with macroscopic and morphologically complex life forms. It has been proposed that the rise of the Avalon biota was triggered by the oxygenation of mid-Ediacaran deep oceans. Here we report a diverse assemblage of morphologically differentiated benthic macrofossils that were preserved largely in situ as carbonaceous compressions in black shales of the Ediacaran Lantian Formation (southern Anhui Province, South China). The Lantian biota, probably older than and taxonomically distinct from the Avalon biota, suggests that morphological diversification of macroscopic eukaryotes may have occurred in the early Ediacaran Period, perhaps shortly after the Marinoan glaciation, and that the redox history of Ediacaran oceans was more complex than previously thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Xunlai -- Chen, Zhe -- Xiao, Shuhai -- Zhou, Chuanming -- Hua, Hong -- England -- Nature. 2011 Feb 17;470(7334):390-3. doi: 10.1038/nature09810.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. xlyuan@nigpas.ac.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21331041" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; *Biota ; *Body Size ; China ; Eukaryota/*classification/cytology/isolation & purification ; *Fossils ; Geologic Sediments ; History, Ancient ; Oceans and Seas ; Oxidation-Reduction ; Phylogeny ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-03-20
    Description: Targeted therapies have demonstrated efficacy against specific subsets of molecularly defined cancers. Although most patients with lung cancer are stratified according to a single oncogenic driver, cancers harbouring identical activating genetic mutations show large variations in their responses to the same targeted therapy. The biology underlying this heterogeneity is not well understood, and the impact of co-existing genetic mutations, especially the loss of tumour suppressors, has not been fully explored. Here we use genetically engineered mouse models to conduct a 'co-clinical' trial that mirrors an ongoing human clinical trial in patients with KRAS-mutant lung cancers. This trial aims to determine if the MEK inhibitor selumetinib (AZD6244) increases the efficacy of docetaxel, a standard of care chemotherapy. Our studies demonstrate that concomitant loss of either p53 (also known as Tp53) or Lkb1 (also known as Stk11), two clinically relevant tumour suppressors, markedly impaired the response of Kras-mutant cancers to docetaxel monotherapy. We observed that the addition of selumetinib provided substantial benefit for mice with lung cancer caused by Kras and Kras and p53 mutations, but mice with Kras and Lkb1 mutations had primary resistance to this combination therapy. Pharmacodynamic studies, including positron-emission tomography (PET) and computed tomography (CT), identified biological markers in mice and patients that provide a rationale for the differential efficacy of these therapies in the different genotypes. These co-clinical results identify predictive genetic biomarkers that should be validated by interrogating samples from patients enrolled on the concurrent clinical trial. These studies also highlight the rationale for synchronous co-clinical trials, not only to anticipate the results of ongoing human clinical trials, but also to generate clinically relevant hypotheses that can inform the analysis and design of human studies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385933/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385933/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Zhao -- Cheng, Katherine -- Walton, Zandra -- Wang, Yuchuan -- Ebi, Hiromichi -- Shimamura, Takeshi -- Liu, Yan -- Tupper, Tanya -- Ouyang, Jing -- Li, Jie -- Gao, Peng -- Woo, Michele S -- Xu, Chunxiao -- Yanagita, Masahiko -- Altabef, Abigail -- Wang, Shumei -- Lee, Charles -- Nakada, Yuji -- Pena, Christopher G -- Sun, Yanping -- Franchetti, Yoko -- Yao, Catherine -- Saur, Amy -- Cameron, Michael D -- Nishino, Mizuki -- Hayes, D Neil -- Wilkerson, Matthew D -- Roberts, Patrick J -- Lee, Carrie B -- Bardeesy, Nabeel -- Butaney, Mohit -- Chirieac, Lucian R -- Costa, Daniel B -- Jackman, David -- Sharpless, Norman E -- Castrillon, Diego H -- Demetri, George D -- Janne, Pasi A -- Pandolfi, Pier Paolo -- Cantley, Lewis C -- Kung, Andrew L -- Engelman, Jeffrey A -- Wong, Kwok-Kin -- 1U01CA141576/CA/NCI NIH HHS/ -- CA122794/CA/NCI NIH HHS/ -- CA137008/CA/NCI NIH HHS/ -- CA137008-01/CA/NCI NIH HHS/ -- CA137181/CA/NCI NIH HHS/ -- CA140594/CA/NCI NIH HHS/ -- CA147940/CA/NCI NIH HHS/ -- K23 CA157631/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- P50 CA090578/CA/NCI NIH HHS/ -- P50 CA090578-06/CA/NCI NIH HHS/ -- P50CA090578/CA/NCI NIH HHS/ -- R01 CA122794/CA/NCI NIH HHS/ -- R01 CA122794-01/CA/NCI NIH HHS/ -- R01 CA137008/CA/NCI NIH HHS/ -- R01 CA137008-01/CA/NCI NIH HHS/ -- R01 CA137181/CA/NCI NIH HHS/ -- R01 CA137181-01A2/CA/NCI NIH HHS/ -- R01 CA140594/CA/NCI NIH HHS/ -- R01 CA140594-01/CA/NCI NIH HHS/ -- R01 CA163896/CA/NCI NIH HHS/ -- RC2 CA147940/CA/NCI NIH HHS/ -- RC2 CA147940-01/CA/NCI NIH HHS/ -- U01 CA141576/CA/NCI NIH HHS/ -- U01 CA141576-01/CA/NCI NIH HHS/ -- England -- Nature. 2012 Mar 18;483(7391):613-7. doi: 10.1038/nature10937.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22425996" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Combined Chemotherapy Protocols ; Benzimidazoles/*pharmacology/therapeutic use ; Biomarkers, Tumor/genetics/metabolism ; *Clinical Trials, Phase II as Topic ; *Disease Models, Animal ; Drug Evaluation, Preclinical ; Fluorodeoxyglucose F18 ; Genes, p53/genetics ; Humans ; Lung Neoplasms/*drug therapy/enzymology/*genetics/metabolism ; MAP Kinase Signaling System/drug effects ; Mice ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors ; Mutation/genetics ; Pharmacogenetics/*methods ; Positron-Emission Tomography ; Protein-Serine-Threonine Kinases/deficiency/genetics ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; Randomized Controlled Trials as Topic ; Reproducibility of Results ; Taxoids/*therapeutic use ; Tomography, X-Ray Computed ; Treatment Outcome ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-04-02
    Description: The current molecular systematics of angiosperms recognizes the basal angiosperms and five major angiosperm lineages: the Chloranthaceae, the magnoliids, the monocots, Ceratophyllum and the eudicots, which consist of the basal eudicots and the core eudicots. The eudicots form the majority of the angiosperms in the world today. The flowering plants are of exceptional evolutionary interest because of their diversity of over 250,000 species and their abundance as the dominant vegetation in most terrestrial ecosystems, but little is known of their very early history. In this report we document an early presence of eudicots during the Early Cretaceous Period. Diagnostic characters of the eudicot fossil Leefructus gen. nov. include simple and deeply trilobate leaves clustered at the nodes in threes or fours, basal palinactinodromous primary venation, pinnate secondary venation, and a long axillary reproductive axis terminating in a flattened receptacle bearing five long, narrow pseudo-syncarpous carpels. These morphological characters suggest that its affinities are with the Ranunculaceae, a basal eudicot family. The fossil co-occurs with Archaefructus sinensis and Hyrcantha decussata whereas Archaefructus liaoningensis comes from more ancient sediments. Multiple radiometric dates of the Lower Cretaceous Yixian Formation place the bed yielding this fossil at 122.6-125.8 million years old. The earliest fossil records of eudicots are 127 to 125 million years old, on the basis of pollen. Thus, Leefructus gen. nov. suggests that the basal eudicots were already present and diverse by the latest Barremian and earliest Aptian.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Ge -- Dilcher, David L -- Wang, Hongshan -- Chen, Zhiduan -- England -- Nature. 2011 Mar 31;471(7340):625-8. doi: 10.1038/nature09811.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Paleontological Institute of Shenyang Normal University, Shenyang 110034, China. sunge@synu.edu.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21455178" target="_blank"〉PubMed〈/a〉
    Keywords: Angiosperms/anatomy & histology/*classification ; Animals ; China ; *Fossils ; *Phylogeny ; Plant Leaves/anatomy & histology/classification ; Time Factors ; Vertebrates
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-06-21
    Description: In the Drosophila optic lobes, the medulla processes visual information coming from inner photoreceptors R7 and R8 and from lamina neurons. It contains approximately 40,000 neurons belonging to more than 70 different types. Here we describe how precise temporal patterning of neural progenitors generates these different neural types. Five transcription factors-Homothorax, Eyeless, Sloppy paired, Dichaete and Tailless-are sequentially expressed in a temporal cascade in each of the medulla neuroblasts as they age. Loss of Eyeless, Sloppy paired or Dichaete blocks further progression of the temporal sequence. We provide evidence that this temporal sequence in neuroblasts, together with Notch-dependent binary fate choice, controls the diversification of the neuronal progeny. Although a temporal sequence of transcription factors had been identified in Drosophila embryonic neuroblasts, our work illustrates the generality of this strategy, with different sequences of transcription factors being used in different contexts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701960/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701960/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Xin -- Erclik, Ted -- Bertet, Claire -- Chen, Zhenqing -- Voutev, Roumen -- Venkatesh, Srinidhi -- Morante, Javier -- Celik, Arzu -- Desplan, Claude -- GM058575/GM/NIGMS NIH HHS/ -- R01 EY017916/EY/NEI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 Jun 27;498(7455):456-62. doi: 10.1038/nature12319. Epub 2013 Jun 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, New York University, 100 Washington Square East, New York, New York 10003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23783517" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*cytology/growth & development ; *Cell Differentiation ; *Cell Lineage ; Drosophila Proteins/metabolism ; Drosophila melanogaster/anatomy & histology/*cytology/metabolism ; Female ; Gene Expression Regulation ; Male ; Neural Stem Cells/*cytology/metabolism ; Neurons/*cytology/*metabolism ; Time Factors ; Transcription Factors/metabolism ; Visual Pathways/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...