ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-07-10
    Description: Variable, diversity and joining gene segment (V(D)J) recombination assembles immunoglobulin heavy or light chain (IgH or IgL) variable region exons in developing bone marrow B cells, whereas class switch recombination (CSR) exchanges IgH constant region exons in peripheral B cells. Both processes use directed DNA double-strand breaks (DSBs) repaired by non-homologous end-joining (NHEJ). Errors in either V(D)J recombination or CSR can initiate chromosomal translocations, including oncogenic IgH locus (Igh) to c-myc (also known as Myc) translocations of peripheral B cell lymphomas. Collaboration between these processes has also been proposed to initiate translocations. However, the occurrence of V(D)J recombination in peripheral B cells is controversial. Here we show that activated NHEJ-deficient splenic B cells accumulate V(D)J-recombination-associated breaks at the lambda IgL locus (Igl), as well as CSR-associated Igh breaks, often in the same cell. Moreover, Igl and Igh breaks are frequently joined to form translocations, a phenomenon associated with specific Igh-Igl co-localization. Igh and c-myc also co-localize in these cells; correspondingly, the introduction of frequent c-myc DSBs robustly promotes Igh-c-myc translocations. Our studies show peripheral B cells that attempt secondary V(D)J recombination, and determine a role for mechanistic factors in promoting recurrent translocations in tumours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907259/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907259/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Jing H -- Gostissa, Monica -- Yan, Catherine T -- Goff, Peter -- Hickernell, Thomas -- Hansen, Erica -- Difilippantonio, Simone -- Wesemann, Duane R -- Zarrin, Ali A -- Rajewsky, Klaus -- Nussenzweig, Andre -- Alt, Frederick W -- 5P01CA92625/CA/NCI NIH HHS/ -- P01 CA092625/CA/NCI NIH HHS/ -- P01 CA092625-010001/CA/NCI NIH HHS/ -- P01 CA092625-020001/CA/NCI NIH HHS/ -- P01 CA092625-060006/CA/NCI NIH HHS/ -- P01 CA092625-070006/CA/NCI NIH HHS/ -- P01 CA092625-080006/CA/NCI NIH HHS/ -- P01 CA092625-090006/CA/NCI NIH HHS/ -- R01 AI077595/AI/NIAID NIH HHS/ -- R01 AI077595-02/AI/NIAID NIH HHS/ -- T32 CA009382/CA/NCI NIH HHS/ -- T32 CA009382-27/CA/NCI NIH HHS/ -- T32 CA009382-28/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2009 Jul 9;460(7252):231-6. doi: 10.1038/nature08159.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19587764" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*metabolism ; Cytidine Deaminase/deficiency/genetics/metabolism ; DNA Breaks, Double-Stranded ; DNA-Binding Proteins/deficiency/metabolism ; Female ; Gene Rearrangement, B-Lymphocyte/*genetics ; Genes, Immunoglobulin/*genetics ; Genes, myc/genetics ; Homeodomain Proteins/metabolism ; Immunoglobulin Class Switching/*genetics ; Immunoglobulin Heavy Chains/genetics ; Immunoglobulin kappa-Chains/genetics ; Immunoglobulin lambda-Chains/genetics ; Integrases/genetics/metabolism ; Interphase ; Lymphocyte Activation ; Male ; Mice ; Receptors, Complement 3d/genetics ; Recombination, Genetic/genetics ; Spleen/cytology/immunology ; Translocation, Genetic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-11
    Description: The transcription factors c-Myc and N-Myc--encoded by Myc and Mycn, respectively--regulate cellular growth and are required for embryonic development. A third paralogue, Mycl1, is dispensable for normal embryonic development but its biological function has remained unclear. To examine the in vivo function of Mycl1 in mice, we generated an inactivating Mycl1(gfp) allele that also reports Mycl1 expression. We find that Mycl1 is selectively expressed in dendritic cells (DCs) of the immune system and controlled by IRF8, and that during DC development, Mycl1 expression is initiated in the common DC progenitor concurrent with reduction in c-Myc expression. Mature DCs lack expression of c-Myc and N-Myc but maintain L-Myc expression even in the presence of inflammatory signals such as granulocyte-macrophage colony-stimulating factor. All DC subsets develop in Mycl1-deficient mice, but some subsets such as migratory CD103(+) conventional DCs in the lung and liver are greatly reduced at steady state. Importantly, loss of L-Myc by DCs causes a significant decrease in in vivo T-cell priming during infection by Listeria monocytogenes and vesicular stomatitis virus. The replacement of c-Myc by L-Myc in immature DCs may provide for Myc transcriptional activity in the setting of inflammation that is required for optimal T-cell priming.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉KC, Wumesh -- Satpathy, Ansuman T -- Rapaport, Aaron S -- Briseno, Carlos G -- Wu, Xiaodi -- Albring, Jorn C -- Russler-Germain, Emilie V -- Kretzer, Nicole M -- Durai, Vivek -- Persaud, Stephen P -- Edelson, Brian T -- Loschko, Jakob -- Cella, Marina -- Allen, Paul M -- Nussenzweig, Michel C -- Colonna, Marco -- Sleckman, Barry P -- Murphy, Theresa L -- Murphy, Kenneth M -- P30 CA091842/CA/NCI NIH HHS/ -- P30 CA91842/CA/NCI NIH HHS/ -- R01 AI024157/AI/NIAID NIH HHS/ -- R01 AI047829/AI/NIAID NIH HHS/ -- T32 AI007163/AI/NIAID NIH HHS/ -- T32 GM007200/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Mar 13;507(7491):243-7. doi: 10.1038/nature12967. Epub 2014 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, Missouri 63110, USA. ; Department of Medicine A, Hematology and Oncology, University of Muenster, 48149 Muenster, Germany. ; Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA. ; 1] Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, Missouri 63110, USA [2] Howard Hughes Medical Institute, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24509714" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/metabolism ; Cell Division ; Cross-Priming/*immunology ; Dendritic Cells/cytology/*immunology/*metabolism ; Female ; *Gene Expression Regulation ; Granulocyte-Macrophage Colony-Stimulating Factor/metabolism ; Inflammation/immunology/metabolism ; Integrin alpha Chains/metabolism ; Interferon Regulatory Factors/metabolism ; Listeria monocytogenes/immunology ; Liver/cytology/immunology ; Lung/cytology/immunology ; Male ; Mice ; Proto-Oncogene Proteins c-myc/deficiency/*metabolism ; T-Lymphocytes/*immunology ; Transcription, Genetic ; Vesiculovirus/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-01
    Description: Self-renewal is the hallmark feature both of normal stem cells and cancer stem cells. Since the regenerative capacity of normal haematopoietic stem cells is limited by the accumulation of reactive oxygen species and DNA double-strand breaks, we speculated that DNA damage might also constrain leukaemic self-renewal and malignant haematopoiesis. Here we show that the histone methyl-transferase MLL4, a suppressor of B-cell lymphoma, is required for stem-cell activity and an aggressive form of acute myeloid leukaemia harbouring the MLL-AF9 oncogene. Deletion of MLL4 enhances myelopoiesis and myeloid differentiation of leukaemic blasts, which protects mice from death related to acute myeloid leukaemia. MLL4 exerts its function by regulating transcriptional programs associated with the antioxidant response. Addition of reactive oxygen species scavengers or ectopic expression of FOXO3 protects MLL4(-/-) MLL-AF9 cells from DNA damage and inhibits myeloid maturation. Similar to MLL4 deficiency, loss of ATM or BRCA1 sensitizes transformed cells to differentiation, suggesting that myeloid differentiation is promoted by loss of genome integrity. Indeed, we show that restriction-enzyme-induced double-strand breaks are sufficient to induce differentiation of MLL-AF9 blasts, which requires cyclin-dependent kinase inhibitor p21(Cip1) (Cdkn1a) activity. In summary, we have uncovered an unexpected tumour-promoting role of genome guardians in enforcing the oncogene-induced differentiation blockade in acute myeloid leukaemia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410707/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410707/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santos, Margarida A -- Faryabi, Robert B -- Ergen, Aysegul V -- Day, Amanda M -- Malhowski, Amy -- Canela, Andres -- Onozawa, Masahiro -- Lee, Ji-Eun -- Callen, Elsa -- Gutierrez-Martinez, Paula -- Chen, Hua-Tang -- Wong, Nancy -- Finkel, Nadia -- Deshpande, Aniruddha -- Sharrow, Susan -- Rossi, Derrick J -- Ito, Keisuke -- Ge, Kai -- Aplan, Peter D -- Armstrong, Scott A -- Nussenzweig, Andre -- CA140575/CA/NCI NIH HHS/ -- CA66996/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R00 CA139009/CA/NCI NIH HHS/ -- R01 DK098263/DK/NIDDK NIH HHS/ -- R01 DK100689/DK/NIDDK NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 Oct 2;514(7520):107-11. doi: 10.1038/nature13483. Epub 2014 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA [2]. ; The Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Human Oncology and Pathogenesis Program and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. ; Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology and Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079327" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins/metabolism ; BRCA1 Protein/genetics/metabolism ; Cell Transformation, Neoplastic ; Cyclin-Dependent Kinase Inhibitor p21/metabolism ; DNA Breaks, Double-Stranded ; *DNA Damage ; DNA Repair ; Female ; Gene Expression Regulation, Neoplastic ; Genes, BRCA1 ; Hematopoietic Stem Cells/cytology/metabolism/pathology ; Histone-Lysine N-Methyltransferase/deficiency/genetics/metabolism ; Leukemia, Myeloid, Acute/*enzymology/*pathology ; Male ; Mice ; *Myelopoiesis ; Oncogene Proteins, Fusion/genetics/metabolism ; Reactive Oxygen Species/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-28
    Description: Despite the success of potent anti-retroviral drugs in controlling human immunodeficiency virus type 1 (HIV-1) infection, little progress has been made in generating an effective HIV-1 vaccine. Although passive transfer of anti-HIV-1 broadly neutralizing antibodies can protect mice or macaques against a single high-dose challenge with HIV or simian/human (SIV/HIV) chimaeric viruses (SHIVs) respectively, the long-term efficacy of a passive antibody transfer approach for HIV-1 has not been examined. Here we show, on the basis of the relatively long-term protection conferred by hepatitis A immune globulin, the efficacy of a single injection (20 mg kg(-1)) of four anti-HIV-1-neutralizing monoclonal antibodies (VRC01, VRC01-LS, 3BNC117, and 10-1074 (refs 9 - 12)) in blocking repeated weekly low-dose virus challenges of the clade B SHIVAD8. Compared with control animals, which required two to six challenges (median = 3) for infection, a single broadly neutralizing antibody infusion prevented virus acquisition for up to 23 weekly challenges. This effect depended on antibody potency and half-life. The highest levels of plasma-neutralizing activity and, correspondingly, the longest protection were found in monkeys administered the more potent antibodies 3BNC117 and 10-1074 (median = 13 and 12.5 weeks, respectively). VRC01, which showed lower plasma-neutralizing activity, protected for a shorter time (median = 8 weeks). The introduction of a mutation that extends antibody half-life into the crystallizable fragment (Fc) domain of VRC01 increased median protection from 8 to 14.5 weeks. If administered to populations at high risk of HIV-1 transmission, such an immunoprophylaxis regimen could have a major impact on virus transmission.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gautam, Rajeev -- Nishimura, Yoshiaki -- Pegu, Amarendra -- Nason, Martha C -- Klein, Florian -- Gazumyan, Anna -- Golijanin, Jovana -- Buckler-White, Alicia -- Sadjadpour, Reza -- Wang, Keyun -- Mankoff, Zachary -- Schmidt, Stephen D -- Lifson, Jeffrey D -- Mascola, John R -- Nussenzweig, Michel C -- Martin, Malcolm A -- AI-100148/AI/NIAID NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- UM1 AI100663-01/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2016 May 5;533(7601):105-9. doi: 10.1038/nature17677. Epub 2016 Apr 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA. ; Laboratory of Experimental Immunology, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany. ; Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, 50937 Cologne, Germany. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27120156" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/administration & dosage/immunology ; Animals ; Antibodies, Monoclonal/administration & dosage/blood/genetics/immunology ; Antibodies, Neutralizing/administration & dosage/blood/genetics/immunology ; Female ; HIV Antibodies/*administration & dosage/blood/genetics/*immunology ; HIV Infections/immunology/prevention & control/transmission ; Half-Life ; Immunoglobulin Fc Fragments/chemistry/genetics/immunology ; Macaca mulatta/immunology/virology ; Male ; Mutation/genetics ; Protein Structure, Tertiary ; SAIDS Vaccines/administration & dosage/immunology ; Simian Acquired Immunodeficiency Syndrome/blood/*immunology/*prevention & control ; Simian Immunodeficiency Virus/*immunology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-02-25
    Description: Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs). However, even the best bNAbs neutralize 10-50% of HIV-1 isolates inefficiently (80% inhibitory concentration (IC80) 〉 5 mug ml(-1)), suggesting that high concentrations of these antibodies would be necessary to achieve general protection. Here we show that eCD4-Ig, a fusion of CD4-Ig with a small CCR5-mimetic sulfopeptide, binds avidly and cooperatively to the HIV-1 envelope glycoprotein (Env) and is more potent than the best bNAbs (geometric mean half-maximum inhibitory concentration (IC50) 〈 0.05 mug ml(-1)). Because eCD4-Ig binds only conserved regions of Env, it is also much broader than any bNAb. For example, eCD4-Ig efficiently neutralized 100% of a diverse panel of neutralization-resistant HIV-1, HIV-2 and simian immunodeficiency virus isolates, including a comprehensive set of isolates resistant to the CD4-binding site bNAbs VRC01, NIH45-46 and 3BNC117. Rhesus macaques inoculated with an AAV vector stably expressed 17-77 mug ml(-1) of fully functional rhesus eCD4-Ig for more than 40 weeks, and these macaques were protected from several infectious challenges with SHIV-AD8. Rhesus eCD4-Ig was also markedly less immunogenic than rhesus forms of four well-characterized bNAbs. Our data suggest that AAV-delivered eCD4-Ig can function like an effective HIV-1 vaccine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352131/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352131/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gardner, Matthew R -- Kattenhorn, Lisa M -- Kondur, Hema R -- von Schaewen, Markus -- Dorfman, Tatyana -- Chiang, Jessica J -- Haworth, Kevin G -- Decker, Julie M -- Alpert, Michael D -- Bailey, Charles C -- Neale, Ernest S Jr -- Fellinger, Christoph H -- Joshi, Vinita R -- Fuchs, Sebastian P -- Martinez-Navio, Jose M -- Quinlan, Brian D -- Yao, Annie Y -- Mouquet, Hugo -- Gorman, Jason -- Zhang, Baoshan -- Poignard, Pascal -- Nussenzweig, Michel C -- Burton, Dennis R -- Kwong, Peter D -- Piatak, Michael Jr -- Lifson, Jeffrey D -- Gao, Guangping -- Desrosiers, Ronald C -- Evans, David T -- Hahn, Beatrice H -- Ploss, Alexander -- Cannon, Paula M -- Seaman, Michael S -- Farzan, Michael -- HHSN261200800001E/PHS HHS/ -- P01 AI100263/AI/NIAID NIH HHS/ -- P30 AI045008/AI/NIAID NIH HHS/ -- R01 AI058715/AI/NIAID NIH HHS/ -- R01 AI080324/AI/NIAID NIH HHS/ -- R01 AI091476/AI/NIAID NIH HHS/ -- R01 AI095098/AI/NIAID NIH HHS/ -- R01 AI098485/AI/NIAID NIH HHS/ -- RR000168/RR/NCRR NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2015 Mar 5;519(7541):87-91. doi: 10.1038/nature14264. Epub 2015 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectious Diseases, The Scripps Research Institute, Jupiter, Florida 33458, USA. ; Department of Comparative Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts 01772, USA. ; Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA. ; Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA. ; Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; 1] Department of Comparative Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts 01772, USA [2] Immunathon Inc., Cambridge, Massachusetts 02141, USA. ; Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA. ; 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Department of Immunology, Institut Pasteur, Paris, 75015, France. ; Vaccine Research Center, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Howard Hughes Medical Institute, New York, New York 10065, USA. ; 1] Department of Immunology and Microbial Science, IAVI Neutralizing Antibody Center, and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [2] Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA. ; 1] Department of Comparative Pathology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts 01772, USA [2] Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA. ; Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53711, USA. ; Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25707797" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/genetics/immunology ; Animals ; Antibodies, Neutralizing/immunology ; Antigens, CD4/genetics/*immunology ; CCR5 Receptor Antagonists/immunology ; Dependovirus/*genetics ; Female ; Genetic Therapy ; HIV Antibodies/immunology ; HIV-1/immunology ; HIV-2/immunology ; Immunoglobulins/genetics/*immunology ; Macaca mulatta ; Male ; Neutralization Tests ; Receptors, CCR5/metabolism ; Simian Acquired Immunodeficiency Syndrome/*immunology/*prevention & ; control/virology ; Simian Immunodeficiency Virus/*immunology ; *Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-04-10
    Description: HIV-1 immunotherapy with a combination of first generation monoclonal antibodies was largely ineffective in pre-clinical and clinical settings and was therefore abandoned. However, recently developed single-cell-based antibody cloning methods have uncovered a new generation of far more potent broadly neutralizing antibodies to HIV-1 (refs 4, 5). These antibodies can prevent infection and suppress viraemia in humanized mice and nonhuman primates, but their potential for human HIV-1 immunotherapy has not been evaluated. Here we report the results of a first-in-man dose escalation phase 1 clinical trial of 3BNC117, a potent human CD4 binding site antibody, in uninfected and HIV-1-infected individuals. 3BNC117 infusion was well tolerated and demonstrated favourable pharmacokinetics. A single 30 mg kg(-1) infusion of 3BNC117 reduced the viral load in HIV-1-infected individuals by 0.8-2.5 log10 and viraemia remained significantly reduced for 28 days. Emergence of resistant viral strains was variable, with some individuals remaining sensitive to 3BNC117 for a period of 28 days. We conclude that, as a single agent, 3BNC117 is safe and effective in reducing HIV-1 viraemia, and that immunotherapy should be explored as a new modality for HIV-1 prevention, therapy and cure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Caskey, Marina -- Klein, Florian -- Lorenzi, Julio C C -- Seaman, Michael S -- West, Anthony P Jr -- Buckley, Noreen -- Kremer, Gisela -- Nogueira, Lilian -- Braunschweig, Malte -- Scheid, Johannes F -- Horwitz, Joshua A -- Shimeliovich, Irina -- Ben-Avraham, Sivan -- Witmer-Pack, Maggi -- Platten, Martin -- Lehmann, Clara -- Burke, Leah A -- Hawthorne, Thomas -- Gorelick, Robert J -- Walker, Bruce D -- Keler, Tibor -- Gulick, Roy M -- Fatkenheuer, Gerd -- Schlesinger, Sarah J -- Nussenzweig, Michel C -- HHSN261200800001E/PHS HHS/ -- U19AI111825-01/AI/NIAID NIH HHS/ -- UL1 TR000043/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jun 25;522(7557):487-91. doi: 10.1038/nature14411. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA. ; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Division of Biology, California Institute of Technology, Pasadena, California 91125, USA. ; 1] First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany [2] Clinical Trials Center Cologne, ZKS Koln, BMBF 01KN1106, University of Cologne, Cologne, Germany. ; 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Albert Ludwigs University of Freiburg, 79085 Freiburg, Germany. ; 1] First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany [2] German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany. ; 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Division of Infectious Diseases, Weill Medical College of Cornell University, New York, New York 10065, USA. ; Celldex Therapeutics, Inc., Hampton, New Jersey 08827, USA. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Ragon Institute of MGH, MIT and Harvard, Howard Hughes Medical Institute, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts 02139, USA. ; Division of Infectious Diseases, Weill Medical College of Cornell University, New York, New York 10065, USA. ; 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855300" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Antibodies, Monoclonal/administration & ; dosage/immunology/pharmacokinetics/therapeutic use ; Antibodies, Neutralizing/administration & dosage/adverse ; effects/*immunology/pharmacology/therapeutic use ; Antigens, CD4/metabolism ; Binding Sites ; Case-Control Studies ; Evolution, Molecular ; Female ; HIV Antibodies/administration & dosage/adverse ; effects/*immunology/pharmacology/therapeutic use ; HIV Envelope Protein gp120/chemistry/immunology ; HIV Infections/immunology/*therapy/virology ; HIV-1/chemistry/drug effects/*immunology ; Humans ; Immunization, Passive/methods ; Male ; Middle Aged ; Molecular Sequence Data ; Time Factors ; Viral Load/drug effects/*immunology ; Viremia/immunology/*therapy/virology ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...