ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-01
    Description: Self-renewal is the hallmark feature both of normal stem cells and cancer stem cells. Since the regenerative capacity of normal haematopoietic stem cells is limited by the accumulation of reactive oxygen species and DNA double-strand breaks, we speculated that DNA damage might also constrain leukaemic self-renewal and malignant haematopoiesis. Here we show that the histone methyl-transferase MLL4, a suppressor of B-cell lymphoma, is required for stem-cell activity and an aggressive form of acute myeloid leukaemia harbouring the MLL-AF9 oncogene. Deletion of MLL4 enhances myelopoiesis and myeloid differentiation of leukaemic blasts, which protects mice from death related to acute myeloid leukaemia. MLL4 exerts its function by regulating transcriptional programs associated with the antioxidant response. Addition of reactive oxygen species scavengers or ectopic expression of FOXO3 protects MLL4(-/-) MLL-AF9 cells from DNA damage and inhibits myeloid maturation. Similar to MLL4 deficiency, loss of ATM or BRCA1 sensitizes transformed cells to differentiation, suggesting that myeloid differentiation is promoted by loss of genome integrity. Indeed, we show that restriction-enzyme-induced double-strand breaks are sufficient to induce differentiation of MLL-AF9 blasts, which requires cyclin-dependent kinase inhibitor p21(Cip1) (Cdkn1a) activity. In summary, we have uncovered an unexpected tumour-promoting role of genome guardians in enforcing the oncogene-induced differentiation blockade in acute myeloid leukaemia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410707/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410707/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santos, Margarida A -- Faryabi, Robert B -- Ergen, Aysegul V -- Day, Amanda M -- Malhowski, Amy -- Canela, Andres -- Onozawa, Masahiro -- Lee, Ji-Eun -- Callen, Elsa -- Gutierrez-Martinez, Paula -- Chen, Hua-Tang -- Wong, Nancy -- Finkel, Nadia -- Deshpande, Aniruddha -- Sharrow, Susan -- Rossi, Derrick J -- Ito, Keisuke -- Ge, Kai -- Aplan, Peter D -- Armstrong, Scott A -- Nussenzweig, Andre -- CA140575/CA/NCI NIH HHS/ -- CA66996/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R00 CA139009/CA/NCI NIH HHS/ -- R01 DK098263/DK/NIDDK NIH HHS/ -- R01 DK100689/DK/NIDDK NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 Oct 2;514(7520):107-11. doi: 10.1038/nature13483. Epub 2014 Jul 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA [2]. ; The Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Human Oncology and Pathogenesis Program and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. ; Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology and Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079327" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins/metabolism ; BRCA1 Protein/genetics/metabolism ; Cell Transformation, Neoplastic ; Cyclin-Dependent Kinase Inhibitor p21/metabolism ; DNA Breaks, Double-Stranded ; *DNA Damage ; DNA Repair ; Female ; Gene Expression Regulation, Neoplastic ; Genes, BRCA1 ; Hematopoietic Stem Cells/cytology/metabolism/pathology ; Histone-Lysine N-Methyltransferase/deficiency/genetics/metabolism ; Leukemia, Myeloid, Acute/*enzymology/*pathology ; Male ; Mice ; *Myelopoiesis ; Oncogene Proteins, Fusion/genetics/metabolism ; Reactive Oxygen Species/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-07-01
    Print ISSN: 0010-4620
    Electronic ISSN: 1460-2067
    Topics: Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-26
    Description: Accretion is a fundamental process which establishes the dynamics of the protoplanetary disk and the final properties of the forming star. In solar-type stars, the star-disk coupling is determined by the magnetic field structure, which is responsible for funneling material from the disk midplane to higher latitudes on the star. Here, we use pan-chromatic data for the Herbig Ae star MWC 480 to address whether similar processes occur in intermediate-mass stars. MWC 480 has X-ray emission typical of actively accreting Herbig Ae stars, but with 5-9 x more photoelectric absorption than expected from optical and FUV data. We consider 3 sources for the absorption: the disk absorption in a wind or jet, and accretion. While we detect the disk in scattered light in are-analysis of archival HST data. the data are consistent with grazing illumination of the dust disk. We find that MWC 480's disk is stratified, geometrically thin, and is not responsible for the observed photoelectric absorption. MWC 480 drives a bipolar jet, but with a mass loss rate which is low compared to other Herbig Ae stars, where the outflow is more favorably oriented and enhanced photoelectric absorption is not seen. This excludes a jet or wind origin for the enhanced photoelectric absorption. We compare MWC 480's 0 VI emission with other Herbig Ae stars. The distribution of the emission in inclination, and lack of a correlation of profile shape and system inclination excludes equatorially-confined accretion for the FUSE Herbig Ae stars. The photoelectric absorption data further suggest that the accretion footprint on MWC 480 and other Herbig Ae stars is located at high temperate, rather than polar, latitudes. These findings support the presence of funneled accretion in MWC 480 and Herbig Ae stars, strengthening the parallel to T Tauri stars.
    Keywords: Astrophysics
    Type: GSFC.JA.5192.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...