ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (17)
  • *Models, Molecular  (4)
  • Nature Publishing Group (NPG)  (21)
  • National Academy of Sciences
Collection
Publisher
Years
  • 1
    Publication Date: 2010-12-03
    Description: The capacity to fine-tune cellular bioenergetics with the demands of stem-cell maintenance and regeneration is central to normal development and ageing, and to organismal survival during periods of acute stress. How energy metabolism and stem-cell homeostatic processes are coordinated is not well understood. Lkb1 acts as an evolutionarily conserved regulator of cellular energy metabolism in eukaryotic cells and functions as the major upstream kinase to phosphorylate AMP-activated protein kinase (AMPK) and 12 other AMPK-related kinases. Whether Lkb1 regulates stem-cell maintenance remains unknown. Here we show that Lkb1 has an essential role in haematopoietic stem cell (HSC) homeostasis. We demonstrate that ablation of Lkb1 in adult mice results in severe pancytopenia and subsequent lethality. Loss of Lkb1 leads to impaired survival and escape from quiescence of HSCs, resulting in exhaustion of the HSC pool and a marked reduction of HSC repopulating potential in vivo. Lkb1 deletion has an impact on cell proliferation in HSCs, but not on more committed compartments, pointing to context-specific functions for Lkb1 in haematopoiesis. The adverse impact of Lkb1 deletion on haematopoiesis was predominantly cell-autonomous and mTOR complex 1 (mTORC1)-independent, and involves multiple mechanisms converging on mitochondrial apoptosis and possibly downregulation of PGC-1 coactivators and their transcriptional network, which have critical roles in mitochondrial biogenesis and function. Thus, Lkb1 serves as an essential regulator of HSCs and haematopoiesis, and more generally, points to the critical importance of coupling energy metabolism and stem-cell homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058342/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058342/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gan, Boyi -- Hu, Jian -- Jiang, Shan -- Liu, Yingchun -- Sahin, Ergun -- Zhuang, Li -- Fletcher-Sananikone, Eliot -- Colla, Simona -- Wang, Y Alan -- Chin, Lynda -- Depinho, Ronald A -- 01CA141508/CA/NCI NIH HHS/ -- R21 CA135057/CA/NCI NIH HHS/ -- R21 CA135057-01/CA/NCI NIH HHS/ -- R21CA135057/CA/NCI NIH HHS/ -- U01 CA141508/CA/NCI NIH HHS/ -- U01 CA141508-01/CA/NCI NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):701-4. doi: 10.1038/nature09595.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124456" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Cycle/*physiology ; Cell Proliferation ; Cell Survival ; *Energy Metabolism ; Female ; Gene Deletion ; Hematopoiesis ; Hematopoietic Stem Cells/*cytology/*metabolism/pathology ; *Homeostasis ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria/metabolism/pathology ; Multiprotein Complexes ; Pancytopenia/genetics ; Phenotype ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Proteins/metabolism ; Survival Analysis ; TOR Serine-Threonine Kinases ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-10-14
    Description: Susceptibility to Crohn's disease, a complex inflammatory disease involving the small intestine, is controlled by over 30 loci. One Crohn's disease risk allele is in ATG16L1, a gene homologous to the essential yeast autophagy gene ATG16 (ref. 2). It is not known how ATG16L1 or autophagy contributes to intestinal biology or Crohn's disease pathogenesis. To address these questions, we generated and characterized mice that are hypomorphic for ATG16L1 protein expression, and validated conclusions on the basis of studies in these mice by analysing intestinal tissues that we collected from Crohn's disease patients carrying the Crohn's disease risk allele of ATG16L1. Here we show that ATG16L1 is a bona fide autophagy protein. Within the ileal epithelium, both ATG16L1 and a second essential autophagy protein ATG5 are selectively important for the biology of the Paneth cell, a specialized epithelial cell that functions in part by secretion of granule contents containing antimicrobial peptides and other proteins that alter the intestinal environment. ATG16L1- and ATG5-deficient Paneth cells exhibited notable abnormalities in the granule exocytosis pathway. In addition, transcriptional analysis revealed an unexpected gain of function specific to ATG16L1-deficient Paneth cells including increased expression of genes involved in peroxisome proliferator-activated receptor (PPAR) signalling and lipid metabolism, of acute phase reactants and of two adipocytokines, leptin and adiponectin, known to directly influence intestinal injury responses. Importantly, Crohn's disease patients homozygous for the ATG16L1 Crohn's disease risk allele displayed Paneth cell granule abnormalities similar to those observed in autophagy-protein-deficient mice and expressed increased levels of leptin protein. Thus, ATG16L1, and probably the process of autophagy, have a role within the intestinal epithelium of mice and Crohn's disease patients by selective effects on the cell biology and specialized regulatory properties of Paneth cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695978/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695978/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cadwell, Ken -- Liu, John Y -- Brown, Sarah L -- Miyoshi, Hiroyuki -- Loh, Joy -- Lennerz, Jochen K -- Kishi, Chieko -- Kc, Wumesh -- Carrero, Javier A -- Hunt, Steven -- Stone, Christian D -- Brunt, Elizabeth M -- Xavier, Ramnik J -- Sleckman, Barry P -- Li, Ellen -- Mizushima, Noboru -- Stappenbeck, Thaddeus S -- Virgin, Herbert W 4th -- AI062773/AI/NIAID NIH HHS/ -- DK43351/DK/NIDDK NIH HHS/ -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK040561-13/DK/NIDDK NIH HHS/ -- P30 DK043351/DK/NIDDK NIH HHS/ -- P30 DK043351-18/DK/NIDDK NIH HHS/ -- P30 DK052574-09/DK/NIDDK NIH HHS/ -- P30 DK52574/DK/NIDDK NIH HHS/ -- R01 AI062773/AI/NIAID NIH HHS/ -- R01 AI062773-01A1/AI/NIAID NIH HHS/ -- R01 AI062832/AI/NIAID NIH HHS/ -- R01 AI062832-04/AI/NIAID NIH HHS/ -- T32 AR007279/AR/NIAMS NIH HHS/ -- T32 AR007279-30/AR/NIAMS NIH HHS/ -- T32 AR07279/AR/NIAMS NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- U54 AI057160-010005/AI/NIAID NIH HHS/ -- U54 AI057160-05S10018/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Nov 13;456(7219):259-63. doi: 10.1038/nature07416. Epub 2008 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18849966" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Autophagy/*genetics ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Crohn Disease/genetics/pathology ; Exocytosis/genetics ; Homozygote ; Humans ; Mice ; Mice, Inbred C57BL ; Mutation ; Paneth Cells/*metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-10-14
    Description: During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory fuel for glucose-dependent tissues. Glucagon stimulates the gluconeogenic program by triggering the dephosphorylation and nuclear translocation of the CREB regulated transcription coactivator 2 (CRTC2; also known as TORC2), while parallel decreases in insulin signalling augment gluconeogenic gene expression through the dephosphorylation and nuclear shuttling of forkhead box O1 (FOXO1). Here we show that a fasting-inducible switch, consisting of the histone acetyltransferase p300 and the nutrient-sensing deacetylase sirtuin 1 (SIRT1), maintains energy balance in mice through the sequential induction of CRTC2 and FOXO1. After glucagon induction, CRTC2 stimulated gluconeogenic gene expression by an association with p300, which we show here is also activated by dephosphorylation at Ser 89 during fasting. In turn, p300 increased hepatic CRTC2 activity by acetylating it at Lys 628, a site that also targets CRTC2 for degradation after its ubiquitination by the E3 ligase constitutive photomorphogenic protein (COP1). Glucagon effects were attenuated during late fasting, when CRTC2 was downregulated owing to SIRT1-mediated deacetylation and when FOXO1 supported expression of the gluconeogenic program. Disrupting SIRT1 activity, by liver-specific knockout of the Sirt1 gene or by administration of a SIRT1 antagonist, increased CRTC2 activity and glucose output, whereas exposure to SIRT1 agonists reduced them. In view of the reciprocal activation of FOXO1 and its coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha, encoded by Ppargc1a) by SIRT1 activators, our results illustrate how the exchange of two gluconeogenic regulators during fasting maintains energy balance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597669/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597669/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Yi -- Dentin, Renaud -- Chen, Danica -- Hedrick, Susan -- Ravnskjaer, Kim -- Schenk, Simon -- Milne, Jill -- Meyers, David J -- Cole, Phil -- Yates, John 3rd -- Olefsky, Jerrold -- Guarente, Leonard -- Montminy, Marc -- R37 GM037828/GM/NIGMS NIH HHS/ -- R37 GM037828-24/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Nov 13;456(7219):269-73. doi: 10.1038/nature07349. Epub 2008 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18849969" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; CREB-Binding Protein/metabolism ; Cell Line, Transformed ; Cyclic AMP Response Element-Binding Protein/metabolism ; Enzyme Inhibitors/pharmacology ; Fasting/*physiology ; Forkhead Transcription Factors/metabolism ; Gene Expression Regulation/drug effects ; Gluconeogenesis/*physiology ; Heterocyclic Compounds with 4 or More Rings/pharmacology ; Humans ; Liver/metabolism ; Male ; Mice ; Mice, Knockout ; Nuclear Proteins/metabolism ; Sirtuin 1 ; Sirtuins/genetics/metabolism ; Stilbenes/pharmacology ; Trans-Activators/metabolism ; Transcription Factors ; Ubiquitin-Protein Ligases/metabolism ; p300-CBP Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-01-15
    Description: In an effort to find new pharmacological modalities to overcome resistance to ATP-binding-site inhibitors of Bcr-Abl, we recently reported the discovery of GNF-2, a selective allosteric Bcr-Abl inhibitor. Here, using solution NMR, X-ray crystallography, mutagenesis and hydrogen exchange mass spectrometry, we show that GNF-2 binds to the myristate-binding site of Abl, leading to changes in the structural dynamics of the ATP-binding site. GNF-5, an analogue of GNF-2 with improved pharmacokinetic properties, when used in combination with the ATP-competitive inhibitors imatinib or nilotinib, suppressed the emergence of resistance mutations in vitro, displayed additive inhibitory activity in biochemical and cellular assays against T315I mutant human Bcr-Abl and displayed in vivo efficacy against this recalcitrant mutant in a murine bone-marrow transplantation model. These results show that therapeutically relevant inhibition of Bcr-Abl activity can be achieved with inhibitors that bind to the myristate-binding site and that combining allosteric and ATP-competitive inhibitors can overcome resistance to either agent alone.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901986/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901986/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jianming -- Adrian, Francisco J -- Jahnke, Wolfgang -- Cowan-Jacob, Sandra W -- Li, Allen G -- Iacob, Roxana E -- Sim, Taebo -- Powers, John -- Dierks, Christine -- Sun, Fangxian -- Guo, Gui-Rong -- Ding, Qiang -- Okram, Barun -- Choi, Yongmun -- Wojciechowski, Amy -- Deng, Xianming -- Liu, Guoxun -- Fendrich, Gabriele -- Strauss, Andre -- Vajpai, Navratna -- Grzesiek, Stephan -- Tuntland, Tove -- Liu, Yi -- Bursulaya, Badry -- Azam, Mohammad -- Manley, Paul W -- Engen, John R -- Daley, George Q -- Warmuth, Markus -- Gray, Nathanael S -- R01 CA130876/CA/NCI NIH HHS/ -- R01 CA130876-03/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jan 28;463(7280):501-6. doi: 10.1038/nature08675. Epub 2010 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Department of Cancer Biology, Seeley G. Mudd Building 628, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20072125" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/*chemistry/metabolism/*pharmacology ; Antineoplastic Combined Chemotherapy Protocols ; Benzamides ; Binding Sites ; Bone Marrow Transplantation ; Cell Line, Tumor ; Crystallization ; Disease Models, Animal ; Drug Resistance, Neoplasm/*drug effects ; Female ; Fusion Proteins, bcr-abl/*chemistry/genetics/metabolism ; Humans ; Imatinib Mesylate ; Inhibitory Concentration 50 ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug ; therapy/enzymology/*metabolism ; Male ; Mass Spectrometry ; Mice ; Models, Molecular ; Mutation/genetics ; Piperazines/chemistry/pharmacology ; Protein Structure, Tertiary ; Pyrimidines/chemistry/metabolism/pharmacology ; Transplantation, Heterologous
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-20
    Description: Epigenetic modifiers have fundamental roles in defining unique cellular identity through the establishment and maintenance of lineage-specific chromatin and methylation status. Several DNA modifications such as 5-hydroxymethylcytosine (5hmC) are catalysed by the ten eleven translocation (Tet) methylcytosine dioxygenase family members, and the roles of Tet proteins in regulating chromatin architecture and gene transcription independently of DNA methylation have been gradually uncovered. However, the regulation of immunity and inflammation by Tet proteins independent of their role in modulating DNA methylation remains largely unknown. Here we show that Tet2 selectively mediates active repression of interleukin-6 (IL-6) transcription during inflammation resolution in innate myeloid cells, including dendritic cells and macrophages. Loss of Tet2 resulted in the upregulation of several inflammatory mediators, including IL-6, at late phase during the response to lipopolysaccharide challenge. Tet2-deficient mice were more susceptible to endotoxin shock and dextran-sulfate-sodium-induced colitis, displaying a more severe inflammatory phenotype and increased IL-6 production compared to wild-type mice. IkappaBzeta, an IL-6-specific transcription factor, mediated specific targeting of Tet2 to the Il6 promoter, further indicating opposite regulatory roles of IkappaBzeta at initial and resolution phases of inflammation. For the repression mechanism, independent of DNA methylation and hydroxymethylation, Tet2 recruited Hdac2 and repressed transcription of Il6 via histone deacetylation. We provide mechanistic evidence for the gene-specific transcription repression activity of Tet2 via histone deacetylation and for the prevention of constant transcription activation at the chromatin level for resolving inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697747/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697747/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Qian -- Zhao, Kai -- Shen, Qicong -- Han, Yanmei -- Gu, Yan -- Li, Xia -- Zhao, Dezhi -- Liu, Yiqi -- Wang, Chunmei -- Zhang, Xiang -- Su, Xiaoping -- Liu, Juan -- Ge, Wei -- Levine, Ross L -- Li, Nan -- Cao, Xuetao -- P30 CA008748/CA/NCI NIH HHS/ -- R01 CA173636/CA/NCI NIH HHS/ -- England -- Nature. 2015 Sep 17;525(7569):389-93. doi: 10.1038/nature15252. Epub 2015 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Key Laboratory of Medical Molecular Biology &Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China. ; National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai 200433, China. ; Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26287468" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Chromatin/chemistry/genetics/metabolism ; Colitis/enzymology/immunology/metabolism ; DNA Methylation ; DNA-Binding Proteins/deficiency/*metabolism ; Dendritic Cells/cytology/metabolism ; Down-Regulation/genetics ; Epigenesis, Genetic ; Female ; HEK293 Cells ; Histone Deacetylase 2/*metabolism ; Histones/chemistry/metabolism ; Humans ; I-kappa B Proteins/metabolism ; Inflammation/enzymology/immunology/*metabolism ; Interleukin-6/*antagonists & inhibitors/*biosynthesis/genetics/immunology ; Macrophages/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Promoter Regions, Genetic/genetics ; Proto-Oncogene Proteins/deficiency/*metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-23
    Description: The single-component type-II NADH dehydrogenases (NDH-2s) serve as alternatives to the multisubunit respiratory complex I (type-I NADH dehydrogenase (NDH-1), also called NADH:ubiquinone oxidoreductase; EC 1.6.5.3) in catalysing electron transfer from NADH to ubiquinone in the mitochondrial respiratory chain. The yeast NDH-2 (Ndi1) oxidizes NADH on the matrix side and reduces ubiquinone to maintain mitochondrial NADH/NAD(+) homeostasis. Ndi1 is a potential therapeutic agent for human diseases caused by complex I defects, particularly Parkinson's disease, because its expression restores the mitochondrial activity in animals with complex I deficiency. NDH-2s in pathogenic microorganisms are viable targets for new antibiotics. Here we solve the crystal structures of Ndi1 in its substrate-free, NADH-, ubiquinone- and NADH-ubiquinone-bound states, to help understand the catalytic mechanism of NDH-2s. We find that Ndi1 homodimerization through its carboxy-terminal domain is critical for its catalytic activity and membrane targeting. The structures reveal two ubiquinone-binding sites (UQ(I) and UQ(II)) in Ndi1. NADH and UQ(I) can bind to Ndi1 simultaneously to form a substrate-protein complex. We propose that UQ(I) interacts with FAD to act as an intermediate for electron transfer, and that NADH transfers electrons through this FAD-UQ(I) complex to UQ(II). Together our data reveal the regulatory and catalytic mechanisms of Ndi1 and may facilitate the development or targeting of NDH-2s for potential therapeutic applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Yue -- Li, Wenfei -- Li, Jian -- Wang, Jiawei -- Ge, Jingpeng -- Xu, Duo -- Liu, Yanjing -- Wu, Kaiqi -- Zeng, Qingyin -- Wu, Jia-Wei -- Tian, Changlin -- Zhou, Bing -- Yang, Maojun -- England -- Nature. 2012 Nov 15;491(7424):478-82. doi: 10.1038/nature11541. Epub 2012 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23086143" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Electron Transport Complex I/*chemistry/isolation & purification/metabolism ; Mitochondria/*enzymology ; *Models, Molecular ; NAD/chemistry ; Protein Binding ; Protein Multimerization ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/chemistry/enzymology ; Saccharomyces cerevisiae Proteins/*chemistry/isolation & purification/metabolism ; Ubiquinone/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-20
    Description: Targeted therapies have demonstrated efficacy against specific subsets of molecularly defined cancers. Although most patients with lung cancer are stratified according to a single oncogenic driver, cancers harbouring identical activating genetic mutations show large variations in their responses to the same targeted therapy. The biology underlying this heterogeneity is not well understood, and the impact of co-existing genetic mutations, especially the loss of tumour suppressors, has not been fully explored. Here we use genetically engineered mouse models to conduct a 'co-clinical' trial that mirrors an ongoing human clinical trial in patients with KRAS-mutant lung cancers. This trial aims to determine if the MEK inhibitor selumetinib (AZD6244) increases the efficacy of docetaxel, a standard of care chemotherapy. Our studies demonstrate that concomitant loss of either p53 (also known as Tp53) or Lkb1 (also known as Stk11), two clinically relevant tumour suppressors, markedly impaired the response of Kras-mutant cancers to docetaxel monotherapy. We observed that the addition of selumetinib provided substantial benefit for mice with lung cancer caused by Kras and Kras and p53 mutations, but mice with Kras and Lkb1 mutations had primary resistance to this combination therapy. Pharmacodynamic studies, including positron-emission tomography (PET) and computed tomography (CT), identified biological markers in mice and patients that provide a rationale for the differential efficacy of these therapies in the different genotypes. These co-clinical results identify predictive genetic biomarkers that should be validated by interrogating samples from patients enrolled on the concurrent clinical trial. These studies also highlight the rationale for synchronous co-clinical trials, not only to anticipate the results of ongoing human clinical trials, but also to generate clinically relevant hypotheses that can inform the analysis and design of human studies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385933/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385933/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Zhao -- Cheng, Katherine -- Walton, Zandra -- Wang, Yuchuan -- Ebi, Hiromichi -- Shimamura, Takeshi -- Liu, Yan -- Tupper, Tanya -- Ouyang, Jing -- Li, Jie -- Gao, Peng -- Woo, Michele S -- Xu, Chunxiao -- Yanagita, Masahiko -- Altabef, Abigail -- Wang, Shumei -- Lee, Charles -- Nakada, Yuji -- Pena, Christopher G -- Sun, Yanping -- Franchetti, Yoko -- Yao, Catherine -- Saur, Amy -- Cameron, Michael D -- Nishino, Mizuki -- Hayes, D Neil -- Wilkerson, Matthew D -- Roberts, Patrick J -- Lee, Carrie B -- Bardeesy, Nabeel -- Butaney, Mohit -- Chirieac, Lucian R -- Costa, Daniel B -- Jackman, David -- Sharpless, Norman E -- Castrillon, Diego H -- Demetri, George D -- Janne, Pasi A -- Pandolfi, Pier Paolo -- Cantley, Lewis C -- Kung, Andrew L -- Engelman, Jeffrey A -- Wong, Kwok-Kin -- 1U01CA141576/CA/NCI NIH HHS/ -- CA122794/CA/NCI NIH HHS/ -- CA137008/CA/NCI NIH HHS/ -- CA137008-01/CA/NCI NIH HHS/ -- CA137181/CA/NCI NIH HHS/ -- CA140594/CA/NCI NIH HHS/ -- CA147940/CA/NCI NIH HHS/ -- K23 CA157631/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- P50 CA090578/CA/NCI NIH HHS/ -- P50 CA090578-06/CA/NCI NIH HHS/ -- P50CA090578/CA/NCI NIH HHS/ -- R01 CA122794/CA/NCI NIH HHS/ -- R01 CA122794-01/CA/NCI NIH HHS/ -- R01 CA137008/CA/NCI NIH HHS/ -- R01 CA137008-01/CA/NCI NIH HHS/ -- R01 CA137181/CA/NCI NIH HHS/ -- R01 CA137181-01A2/CA/NCI NIH HHS/ -- R01 CA140594/CA/NCI NIH HHS/ -- R01 CA140594-01/CA/NCI NIH HHS/ -- R01 CA163896/CA/NCI NIH HHS/ -- RC2 CA147940/CA/NCI NIH HHS/ -- RC2 CA147940-01/CA/NCI NIH HHS/ -- U01 CA141576/CA/NCI NIH HHS/ -- U01 CA141576-01/CA/NCI NIH HHS/ -- England -- Nature. 2012 Mar 18;483(7391):613-7. doi: 10.1038/nature10937.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22425996" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Combined Chemotherapy Protocols ; Benzimidazoles/*pharmacology/therapeutic use ; Biomarkers, Tumor/genetics/metabolism ; *Clinical Trials, Phase II as Topic ; *Disease Models, Animal ; Drug Evaluation, Preclinical ; Fluorodeoxyglucose F18 ; Genes, p53/genetics ; Humans ; Lung Neoplasms/*drug therapy/enzymology/*genetics/metabolism ; MAP Kinase Signaling System/drug effects ; Mice ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors ; Mutation/genetics ; Pharmacogenetics/*methods ; Positron-Emission Tomography ; Protein-Serine-Threonine Kinases/deficiency/genetics ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; Randomized Controlled Trials as Topic ; Reproducibility of Results ; Taxoids/*therapeutic use ; Tomography, X-Ray Computed ; Treatment Outcome ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-03-01
    Description: The mammalian target of rapamycin (mTOR) kinase is a master regulator of protein synthesis that couples nutrient sensing to cell growth and cancer. However, the downstream translationally regulated nodes of gene expression that may direct cancer development are poorly characterized. Using ribosome profiling, we uncover specialized translation of the prostate cancer genome by oncogenic mTOR signalling, revealing a remarkably specific repertoire of genes involved in cell proliferation, metabolism and invasion. We extend these findings by functionally characterizing a class of translationally controlled pro-invasion messenger RNAs that we show direct prostate cancer invasion and metastasis downstream of oncogenic mTOR signalling. Furthermore, we develop a clinically relevant ATP site inhibitor of mTOR, INK128, which reprograms this gene expression signature with therapeutic benefit for prostate cancer metastasis, for which there is presently no cure. Together, these findings extend our understanding of how the 'cancerous' translation machinery steers specific cancer cell behaviours, including metastasis, and may be therapeutically targeted.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663483/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663483/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsieh, Andrew C -- Liu, Yi -- Edlind, Merritt P -- Ingolia, Nicholas T -- Janes, Matthew R -- Sher, Annie -- Shi, Evan Y -- Stumpf, Craig R -- Christensen, Carly -- Bonham, Michael J -- Wang, Shunyou -- Ren, Pingda -- Martin, Michael -- Jessen, Katti -- Feldman, Morris E -- Weissman, Jonathan S -- Shokat, Kevan M -- Rommel, Christian -- Ruggero, Davide -- R01 CA140456/CA/NCI NIH HHS/ -- R01 CA154916/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 22;485(7396):55-61. doi: 10.1038/nature10912.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22367541" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Benzoxazoles/pharmacology ; Cell Line, Tumor ; Cell Movement/drug effects/genetics ; Eukaryotic Initiation Factor-4E/metabolism ; Eukaryotic Initiation Factors/metabolism ; Gene Expression Regulation, Neoplastic/drug effects/genetics ; Genome/genetics ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Neoplasm Invasiveness/genetics ; *Neoplasm Metastasis/drug therapy/genetics ; Phosphoproteins/metabolism ; Prostatic Neoplasms/drug therapy/genetics/*pathology ; *Protein Biosynthesis ; Pyrimidines/pharmacology ; RNA, Messenger/genetics/metabolism ; Repressor Proteins/metabolism ; *Signal Transduction ; TOR Serine-Threonine Kinases/antagonists & inhibitors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-07-31
    Description: Mammalian pre-implantation development is a complex process involving dramatic changes in the transcriptional architecture. We report here a comprehensive analysis of transcriptome dynamics from oocyte to morula in both human and mouse embryos, using single-cell RNA sequencing. Based on single-nucleotide variants in human blastomere messenger RNAs and paternal-specific single-nucleotide polymorphisms, we identify novel stage-specific monoallelic expression patterns for a significant portion of polymorphic gene transcripts (25 to 53%). By weighted gene co-expression network analysis, we find that each developmental stage can be delineated concisely by a small number of functional modules of co-expressed genes. This result indicates a sequential order of transcriptional changes in pathways of cell cycle, gene regulation, translation and metabolism, acting in a step-wise fashion from cleavage to morula. Cross-species comparisons with mouse pre-implantation embryos reveal that the majority of human stage-specific modules (7 out of 9) are notably preserved, but developmental specificity and timing differ between human and mouse. Furthermore, we identify conserved key members (or hub genes) of the human and mouse networks. These genes represent novel candidates that are likely to be key in driving mammalian pre-implantation development. Together, the results provide a valuable resource to dissect gene regulatory mechanisms underlying progressive development of early mammalian embryos.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xue, Zhigang -- Huang, Kevin -- Cai, Chaochao -- Cai, Lingbo -- Jiang, Chun-yan -- Feng, Yun -- Liu, Zhenshan -- Zeng, Qiao -- Cheng, Liming -- Sun, Yi E -- Liu, Jia-yin -- Horvath, Steve -- Fan, Guoping -- P01 HD006576/HD/NICHD NIH HHS/ -- P30 HD004612/HD/NICHD NIH HHS/ -- P50 DA005010/DA/NIDA NIH HHS/ -- England -- Nature. 2013 Aug 29;500(7464):593-7. doi: 10.1038/nature12364. Epub 2013 Jul 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Translational Center for Stem Cell Research, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200065, China. xuezhigang75@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23892778" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Blastocyst/cytology/metabolism ; Cell Cycle/genetics ; Embryo, Mammalian/cytology/*embryology/*metabolism ; Embryonic Development/*genetics ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Humans ; Mice ; Morula/cytology/metabolism ; Oocytes/cytology/metabolism ; *Sequence Analysis, RNA ; *Single-Cell Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-12-03
    Description: Genomic imprinting is an allele-specific gene expression system that is important for mammalian development and function. The molecular basis of genomic imprinting is allele-specific DNA methylation. Although it is well known that the de novo DNA methyltransferases Dnmt3a and Dnmt3b are responsible for the establishment of genomic imprinting, how the methylation mark is erased during primordial germ cell (PGC) reprogramming remains unclear. Tet1 is one of the ten-eleven translocation family proteins, which have the capacity to oxidize 5-methylcytosine (5mC), specifically expressed in reprogramming PGCs. Here we report that Tet1 has a critical role in the erasure of genomic imprinting. We show that despite their identical genotype, progenies derived from mating between Tet1 knockout males and wild-Peg10 and Peg3, which exhibit aberrant hypermethylation in the paternal allele of differential methylated regions (DMRs). RNA-seq reveals extensive dysregulation of imprinted genes in the next generation due to paternal loss of Tet1 function. Genome-wide DNA methylation analysis of embryonic day 13.5 PGCs and sperm of Tet1 knockout mice revealed hypermethylation of DMRs of imprinted genes in sperm, which can be traced back to PGCs. Analysis of the DNA methylation dynamics in reprogramming PGCs indicates that Tet1 functions to wipe out remaining methylation, including imprinted genes, at the late reprogramming stage. Furthermore, we provide evidence supporting the role of Tet1 in the erasure of paternal imprints in the female germ line. Thus, our study establishes a critical function of Tet1 in the erasure of genomic imprinting.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957231/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957231/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamaguchi, Shinpei -- Shen, Li -- Liu, Yuting -- Sendler, Damian -- Zhang, Yi -- U01 DK089565/DK/NIDDK NIH HHS/ -- U01DK089565/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Dec 19;504(7480):460-4. doi: 10.1038/nature12805. Epub 2013 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA [3] Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; 1] Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA [2] Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA [3] Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA [4] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [5] Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24291790" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Cellular Reprogramming/genetics ; Crosses, Genetic ; DNA Methylation/genetics ; DNA-Binding Proteins/deficiency/genetics/*metabolism ; Dioxygenases/deficiency/genetics/metabolism ; Embryo Loss/enzymology/genetics ; Embryo, Mammalian/embryology/enzymology/metabolism ; Female ; *Genomic Imprinting/genetics ; Genotype ; Germ Cells/*metabolism ; Male ; Mice ; Mice, Knockout ; Proto-Oncogene Proteins/deficiency/genetics/*metabolism ; Spermatozoa/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...