ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (129)
  • Animals  (117)
  • Male  (48)
  • Nature Publishing Group (NPG)  (129)
  • American Geophysical Union (AGU)
  • National Academy of Sciences
  • Natural Sciences in General  (129)
  • Medicine  (129)
Collection
  • Articles  (129)
Publisher
Years
Topic
  • 11
    Publication Date: 2009-10-23
    Description: The tumour stroma is believed to contribute to some of the most malignant characteristics of epithelial tumours. However, signalling between stromal and tumour cells is complex and remains poorly understood. Here we show that the genetic inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated the initiation, progression and malignant transformation of mammary epithelial tumours. This was associated with the massive remodelling of the extracellular matrix (ECM), innate immune cell infiltration and increased angiogenesis. Loss of Pten in stromal fibroblasts led to increased expression, phosphorylation (T72) and recruitment of Ets2 to target promoters known to be involved in these processes. Remarkably, Ets2 inactivation in Pten stroma-deleted tumours ameliorated disruption of the tumour microenvironment and was sufficient to decrease tumour growth and progression. Global gene expression profiling of mammary stromal cells identified a Pten-specific signature that was highly represented in the tumour stroma of patients with breast cancer. These findings identify the Pten-Ets2 axis as a critical stroma-specific signalling pathway that suppresses mammary epithelial tumours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767301/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767301/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trimboli, Anthony J -- Cantemir-Stone, Carmen Z -- Li, Fu -- Wallace, Julie A -- Merchant, Anand -- Creasap, Nicholas -- Thompson, John C -- Caserta, Enrico -- Wang, Hui -- Chong, Jean-Leon -- Naidu, Shan -- Wei, Guo -- Sharma, Sudarshana M -- Stephens, Julie A -- Fernandez, Soledad A -- Gurcan, Metin N -- Weinstein, Michael B -- Barsky, Sanford H -- Yee, Lisa -- Rosol, Thomas J -- Stromberg, Paul C -- Robinson, Michael L -- Pepin, Francois -- Hallett, Michael -- Park, Morag -- Ostrowski, Michael C -- Leone, Gustavo -- P01 CA097189/CA/NCI NIH HHS/ -- P01 CA097189-050002/CA/NCI NIH HHS/ -- P01CA097189/CA/NCI NIH HHS/ -- R01 CA053271/CA/NCI NIH HHS/ -- R01 CA085619/CA/NCI NIH HHS/ -- R01 CA085619-05/CA/NCI NIH HHS/ -- R01 CA121275/CA/NCI NIH HHS/ -- R01 CA121275-02/CA/NCI NIH HHS/ -- R01 HD047470/HD/NICHD NIH HHS/ -- R01 HD047470-05/HD/NICHD NIH HHS/ -- R01CA053271/CA/NCI NIH HHS/ -- R01CA85619/CA/NCI NIH HHS/ -- R01HD47470/HD/NICHD NIH HHS/ -- England -- Nature. 2009 Oct 22;461(7267):1084-91. doi: 10.1038/nature08486.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio 43210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847259" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*metabolism/*pathology ; Cell Line, Tumor ; Cell Proliferation ; Cell Transformation, Neoplastic ; Extracellular Matrix/metabolism ; Fibroblasts/*metabolism ; Gene Deletion ; Gene Expression Regulation, Neoplastic ; Humans ; Immunity, Innate ; Mammary Neoplasms, Experimental/metabolism/pathology ; Mice ; Mice, Transgenic ; Neoplasms, Glandular and Epithelial/*metabolism/*pathology ; PTEN Phosphohydrolase/deficiency/genetics/*metabolism ; Proto-Oncogene Protein c-ets-2/deficiency/metabolism ; Stromal Cells/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2009-06-06
    Description: Barrier structures (for example, epithelia around tissues and plasma membranes around cells) are required for internal homeostasis and protection from pathogens. Wound detection and healing represent a dormant morphogenetic program that can be rapidly executed to restore barrier integrity and tissue homeostasis. In animals, initial steps include recruitment of leukocytes to the site of injury across distances of hundreds of micrometres within minutes of wounding. The spatial signals that direct this immediate tissue response are unknown. Owing to their fast diffusion and versatile biological activities, reactive oxygen species, including hydrogen peroxide (H(2)O(2)), are interesting candidates for wound-to-leukocyte signalling. Here we probe the role of H(2)O(2) during the early events of wound responses in zebrafish larvae expressing a genetically encoded H(2)O(2) sensor. This reporter revealed a sustained rise in H(2)O(2) concentration at the wound margin, starting approximately 3 min after wounding and peaking at approximately 20 min, which extended approximately 100-200 microm into the tail-fin epithelium as a decreasing concentration gradient. Using pharmacological and genetic inhibition, we show that this gradient is created by dual oxidase (Duox), and that it is required for rapid recruitment of leukocytes to the wound. This is the first observation, to our knowledge, of a tissue-scale H(2)O(2) pattern, and the first evidence that H(2)O(2) signals to leukocytes in tissues, in addition to its known antiseptic role.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803098/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803098/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Niethammer, Philipp -- Grabher, Clemens -- Look, A Thomas -- Mitchison, Timothy J -- GM023928/GM/NIGMS NIH HHS/ -- R01 GM023928/GM/NIGMS NIH HHS/ -- R01 GM023928-30/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Jun 18;459(7249):996-9. doi: 10.1038/nature08119. Epub 2009 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02114, USA. Philipp_Niethammer@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19494811" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Diffusion ; Hydrogen Peroxide/*metabolism ; Larva/metabolism ; Leukocytes/cytology/physiology ; NADPH Oxidase/metabolism ; Wound Healing/physiology ; Wounds and Injuries/enzymology/*metabolism/pathology ; Zebrafish/genetics/*metabolism ; Zebrafish Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2009-07-28
    Description: Establishment and maintenance of proper architecture is essential for endoplasmic reticulum (ER) function. Homotypic membrane fusion is required for ER biogenesis and maintenance, and has been shown to depend on GTP hydrolysis. Here we demonstrate that Drosophila Atlastin--the fly homologue of the mammalian GTPase atlastin 1 involved in hereditary spastic paraplegia--localizes on ER membranes and that its loss causes ER fragmentation. Drosophila Atlastin embedded in distinct membranes has the ability to form trans-oligomeric complexes and its overexpression induces enlargement of ER profiles, consistent with excessive fusion of ER membranes. In vitro experiments confirm that Atlastin autonomously drives membrane fusion in a GTP-dependent fashion. In contrast, GTPase-deficient Atlastin is inactive, unable to form trans-oligomeric complexes owing to failure to self-associate, and incapable of promoting fusion in vitro. These results demonstrate that Atlastin mediates membrane tethering and fusion and strongly suggest that it is the GTPase activity that is required for ER homotypic fusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orso, Genny -- Pendin, Diana -- Liu, Song -- Tosetto, Jessica -- Moss, Tyler J -- Faust, Joseph E -- Micaroni, Massimo -- Egorova, Anastasia -- Martinuzzi, Andrea -- McNew, James A -- Daga, Andrea -- GM71832/GM/NIGMS NIH HHS/ -- GTF08001/Telethon/Italy -- R01 GM071832/GM/NIGMS NIH HHS/ -- TCR08004/Telethon/Italy -- England -- Nature. 2009 Aug 20;460(7258):978-83. doi: 10.1038/nature08280. Epub 2009 Jul 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eugenio Medea Scientific Institute, Conegliano 31015, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19633650" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila Proteins/deficiency/genetics/*metabolism ; Drosophila melanogaster/*cytology/*enzymology/genetics ; *Dynamins ; Endoplasmic Reticulum/*metabolism/pathology ; GTP Phosphohydrolases/deficiency/genetics/*metabolism ; HeLa Cells ; Humans ; *Membrane Fusion ; Protein Transport ; Proteolipids/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2009-04-28
    Description: Dengue fever is the most frequent arthropod-borne viral disease of humans, with almost half of the world's population at risk of infection. The high prevalence, lack of an effective vaccine, and absence of specific treatment conspire to make dengue fever a global public health threat. Given their compact genomes, dengue viruses (DENV-1-4) and other flaviviruses probably require an extensive number of host factors; however, only a limited number of human, and an even smaller number of insect host factors, have been identified. Here we identify insect host factors required for DENV-2 propagation, by carrying out a genome-wide RNA interference screen in Drosophila melanogaster cells using a well-established 22,632 double-stranded RNA library. This screen identified 116 candidate dengue virus host factors (DVHFs). Although some were previously associated with flaviviruses (for example, V-ATPases and alpha-glucosidases), most of the DVHFs were newly implicated in dengue virus propagation. The dipteran DVHFs had 82 readily recognizable human homologues and, using a targeted short-interfering-RNA screen, we showed that 42 of these are human DVHFs. This indicates notable conservation of required factors between dipteran and human hosts. This work suggests new approaches to control infection in the insect vector and the mammalian host.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462662/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462662/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sessions, October M -- Barrows, Nicholas J -- Souza-Neto, Jayme A -- Robinson, Timothy J -- Hershey, Christine L -- Rodgers, Mary A -- Ramirez, Jose L -- Dimopoulos, George -- Yang, Priscilla L -- Pearson, James L -- Garcia-Blanco, Mariano A -- 1R01AI061576-01/AI/NIAID NIH HHS/ -- 1R01AI076442/AI/NIAID NIH HHS/ -- 1SA0RR024572-1/RR/NCRR NIH HHS/ -- 5P30-CA14236/CA/NCI NIH HHS/ -- 5U54-AI057157-05S/AI/NIAID NIH HHS/ -- R01 AI076442/AI/NIAID NIH HHS/ -- R01 AI078997/AI/NIAID NIH HHS/ -- R01 AI078997-01A1/AI/NIAID NIH HHS/ -- R01 AI078997-02/AI/NIAID NIH HHS/ -- R01 GM067761/GM/NIGMS NIH HHS/ -- R21 AI090188/AI/NIAID NIH HHS/ -- R21 AI090188-01/AI/NIAID NIH HHS/ -- R21 NS063845/NS/NINDS NIH HHS/ -- R21-AI64925/AI/NIAID NIH HHS/ -- T32 AI007417/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54 AI057159/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Apr 23;458(7241):1047-50. doi: 10.1038/nature07967.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19396146" target="_blank"〉PubMed〈/a〉
    Keywords: Aedes/genetics/virology ; Animals ; Cell Line ; Conserved Sequence/*genetics/physiology ; Dengue Virus/*physiology ; Drosophila melanogaster/*genetics/physiology/*virology ; Gene Knockdown Techniques ; Genome, Insect/genetics ; Host-Pathogen Interactions/*genetics ; Humans ; Insect Vectors/*genetics/*physiology ; RNA Interference ; RNA, Double-Stranded/genetics/metabolism ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2009-08-28
    Description: Sex in birds is chromosomally based, as in mammals, but the sex chromosomes are different and the mechanism of avian sex determination has been a long-standing mystery. In the chicken and all other birds, the homogametic sex is male (ZZ) and the heterogametic sex is female (ZW). Two hypotheses have been proposed for the mechanism of avian sex determination. The W (female) chromosome may carry a dominant-acting ovary determinant. Alternatively, the dosage of a Z-linked gene may mediate sex determination, two doses being required for male development (ZZ). A strong candidate avian sex-determinant under the dosage hypothesis is the conserved Z-linked gene, DMRT1 (doublesex and mab-3-related transcription factor 1). Here we used RNA interference (RNAi) to knock down DMRT1 in early chicken embryos. Reduction of DMRT1 protein expression in ovo leads to feminization of the embryonic gonads in genetically male (ZZ) embryos. Affected males show partial sex reversal, characterized by feminization of the gonads. The feminized left gonad shows female-like histology, disorganized testis cords and a decline in the testicular marker, SOX9. The ovarian marker, aromatase, is ectopically activated. The feminized right gonad shows a more variable loss of DMRT1 and ectopic aromatase activation, suggesting differential sensitivity to DMRT1 between left and right gonads. Germ cells also show a female pattern of distribution in the feminized male gonads. These results indicate that DMRT1 is required for testis determination in the chicken. Our data support the Z dosage hypothesis for avian sex determination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Craig A -- Roeszler, Kelly N -- Ohnesorg, Thomas -- Cummins, David M -- Farlie, Peter G -- Doran, Timothy J -- Sinclair, Andrew H -- England -- Nature. 2009 Sep 10;461(7261):267-71. doi: 10.1038/nature08298. Epub 2009 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Murdoch Children's Research Institute and Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia. craig.smith@mcri.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19710650" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers/analysis ; Cell Line ; Chick Embryo ; Chickens/*genetics/*physiology ; Disorders of Sex Development ; Down-Regulation ; Female ; Gene Dosage/genetics ; Male ; MicroRNAs/genetics/metabolism ; Models, Genetic ; Ovary/embryology/metabolism ; RNA Interference ; SOX9 Transcription Factor/genetics/metabolism ; *Sex Characteristics ; Sex Chromosomes/*genetics ; *Sex Determination Processes ; Testis/embryology/metabolism ; Transcription Factors/deficiency/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2009-12-25
    Description: Evenly spaced nucleosomes directly correlate with condensed chromatin and gene silencing. The ATP-dependent chromatin assembly factor (ACF) forms such structures in vitro and is required for silencing in vivo. ACF generates and maintains nucleosome spacing by constantly moving a nucleosome towards the longer flanking DNA faster than the shorter flanking DNA. How the enzyme rapidly moves back and forth between both sides of a nucleosome to accomplish bidirectional movement is unknown. Here we show that nucleosome movement depends cooperatively on two ACF molecules, indicating that ACF functions as a dimer of ATPases. Further, the nucleotide state determines whether the dimer closely engages one or both sides of the nucleosome. Three-dimensional reconstruction by single-particle electron microscopy of the ATPase-nucleosome complex in an activated ATP state reveals a dimer architecture in which the two ATPases face each other. Our results indicate a model in which the two ATPases work in a coordinated manner, taking turns to engage either side of a nucleosome, thereby allowing processive bidirectional movement. This novel dimeric motor mechanism differs from that of dimeric motors such as kinesin and dimeric helicases that processively translocate unidirectionally and reflects the unique challenges faced by motors that move nucleosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869534/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869534/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Racki, Lisa R -- Yang, Janet G -- Naber, Nariman -- Partensky, Peretz D -- Acevedo, Ashley -- Purcell, Thomas J -- Cooke, Roger -- Cheng, Yifan -- Narlikar, Geeta J -- R01 GM073767/GM/NIGMS NIH HHS/ -- R01 GM073767-01/GM/NIGMS NIH HHS/ -- R01 GM073767-02/GM/NIGMS NIH HHS/ -- R01 GM073767-03/GM/NIGMS NIH HHS/ -- R01 GM073767-03S1/GM/NIGMS NIH HHS/ -- R01 GM073767-04/GM/NIGMS NIH HHS/ -- R01 GM073767-05/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 24;462(7276):1016-21. doi: 10.1038/nature08621.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20033039" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Chromatin Assembly and Disassembly/*physiology ; Dimerization ; Gene Silencing/physiology ; Histones/metabolism ; Humans ; Microscopy, Electron, Transmission ; *Models, Molecular ; Multiprotein Complexes/*metabolism ; Nucleosomes/chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Transcription Factors/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-09-10
    Description: Combined analyses of gene networks and DNA sequence variation can provide new insights into the aetiology of common diseases that may not be apparent from genome-wide association studies alone. Recent advances in rat genomics are facilitating systems-genetics approaches. Here we report the use of integrated genome-wide approaches across seven rat tissues to identify gene networks and the loci underlying their regulation. We defined an interferon regulatory factor 7 (IRF7)-driven inflammatory network (IDIN) enriched for viral response genes, which represents a molecular biomarker for macrophages and which was regulated in multiple tissues by a locus on rat chromosome 15q25. We show that Epstein-Barr virus induced gene 2 (Ebi2, also known as Gpr183), which lies at this locus and controls B lymphocyte migration, is expressed in macrophages and regulates the IDIN. The human orthologous locus on chromosome 13q32 controlled the human equivalent of the IDIN, which was conserved in monocytes. IDIN genes were more likely to associate with susceptibility to type 1 diabetes (T1D)-a macrophage-associated autoimmune disease-than randomly selected immune response genes (P = 8.85 x 10(-6)). The human locus controlling the IDIN was associated with the risk of T1D at single nucleotide polymorphism rs9585056 (P = 7.0 x 10(-10); odds ratio, 1.15), which was one of five single nucleotide polymorphisms in this region associated with EBI2 (GPR183) expression. These data implicate IRF7 network genes and their regulatory locus in the pathogenesis of T1D.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657719/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657719/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heinig, Matthias -- Petretto, Enrico -- Wallace, Chris -- Bottolo, Leonardo -- Rotival, Maxime -- Lu, Han -- Li, Yoyo -- Sarwar, Rizwan -- Langley, Sarah R -- Bauerfeind, Anja -- Hummel, Oliver -- Lee, Young-Ae -- Paskas, Svetlana -- Rintisch, Carola -- Saar, Kathrin -- Cooper, Jason -- Buchan, Rachel -- Gray, Elizabeth E -- Cyster, Jason G -- Cardiogenics Consortium -- Erdmann, Jeanette -- Hengstenberg, Christian -- Maouche, Seraya -- Ouwehand, Willem H -- Rice, Catherine M -- Samani, Nilesh J -- Schunkert, Heribert -- Goodall, Alison H -- Schulz, Herbert -- Roider, Helge G -- Vingron, Martin -- Blankenberg, Stefan -- Munzel, Thomas -- Zeller, Tanja -- Szymczak, Silke -- Ziegler, Andreas -- Tiret, Laurence -- Smyth, Deborah J -- Pravenec, Michal -- Aitman, Timothy J -- Cambien, Francois -- Clayton, David -- Todd, John A -- Hubner, Norbert -- Cook, Stuart A -- 061858/Wellcome Trust/United Kingdom -- 076113/Wellcome Trust/United Kingdom -- 089989/Wellcome Trust/United Kingdom -- MC_U120061454/Medical Research Council/United Kingdom -- MC_U120085815/Medical Research Council/United Kingdom -- MC_U120097112/Medical Research Council/United Kingdom -- P301/10/0290/British Heart Foundation/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Sep 23;467(7314):460-4. doi: 10.1038/nature09386. Epub 2010 Sep 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Delbruck-Center for Molecular Medicine (MDC), Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20827270" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromosomes, Human, Pair 13/genetics ; Chromosomes, Mammalian/genetics ; Diabetes Mellitus, Type 1/*genetics/immunology ; Gene Regulatory Networks/genetics ; Genetic Loci/*genetics ; Genetic Predisposition to Disease/*genetics ; Genome-Wide Association Study ; Humans ; Immunity, Innate/*genetics ; Inflammation/genetics/immunology ; Interferon Regulatory Factor-7/immunology ; Macrophages/immunology/metabolism ; Organ Specificity ; Polymorphism, Single Nucleotide/genetics ; Quantitative Trait Loci/genetics ; Rats ; Receptors, G-Protein-Coupled/genetics/metabolism ; Viruses/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-04-13
    Description: The ovarian hormones oestrogen and progesterone profoundly influence breast cancer risk, underpinning the benefit of endocrine therapies in the treatment of breast cancer. Modulation of their effects through ovarian ablation or chemoprevention strategies also significantly decreases breast cancer incidence. Conversely, there is an increased risk of breast cancer associated with pregnancy in the short term. The cellular mechanisms underlying these observations, however, are poorly defined. Here we demonstrate that mouse mammary stem cells (MaSCs) are highly responsive to steroid hormone signalling, despite lacking the oestrogen and progesterone receptors. Ovariectomy markedly diminished MaSC number and outgrowth potential in vivo, whereas MaSC activity increased in mice treated with oestrogen plus progesterone. Notably, even three weeks of treatment with the aromatase inhibitor letrozole was sufficient to reduce the MaSC pool. In contrast, pregnancy led to a transient 11-fold increase in MaSC numbers, probably mediated through paracrine signalling from RANK ligand. The augmented MaSC pool indicates a cellular basis for the short-term increase in breast cancer incidence that accompanies pregnancy. These findings further indicate that breast cancer chemoprevention may be achieved, in part, through suppression of MaSC function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asselin-Labat, Marie-Liesse -- Vaillant, Francois -- Sheridan, Julie M -- Pal, Bhupinder -- Wu, Di -- Simpson, Evan R -- Yasuda, Hisataka -- Smyth, Gordon K -- Martin, T John -- Lindeman, Geoffrey J -- Visvader, Jane E -- England -- Nature. 2010 Jun 10;465(7299):798-802. doi: 10.1038/nature09027. Epub 2010 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20383121" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD24/metabolism ; Antigens, CD29/metabolism ; Aromatase/metabolism ; Aromatase Inhibitors/pharmacology ; Cell Count ; Estrogens/*metabolism/pharmacology ; Female ; Humans ; Integrin beta3/metabolism ; Mammary Glands, Animal/*cytology ; Mice ; Nitriles/pharmacology ; Ovariectomy ; Paracrine Communication/drug effects ; Pregnancy ; Pregnancy, Animal/physiology ; Progesterone/antagonists & inhibitors/*metabolism/pharmacology ; RANK Ligand/metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Receptors, Estrogen/deficiency ; Receptors, Progesterone/deficiency ; Signal Transduction/drug effects ; Stem Cells/*cytology/drug effects/metabolism ; Triazoles/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-08-11
    Description: The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene Slc39a12 as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter ZIP12. Here we report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This new and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Lan -- Oliver, Eduardo -- Maratou, Klio -- Atanur, Santosh S -- Dubois, Olivier D -- Cotroneo, Emanuele -- Chen, Chien-Nien -- Wang, Lei -- Arce, Cristina -- Chabosseau, Pauline L -- Ponsa-Cobas, Joan -- Frid, Maria G -- Moyon, Benjamin -- Webster, Zoe -- Aldashev, Almaz -- Ferrer, Jorge -- Rutter, Guy A -- Stenmark, Kurt R -- Aitman, Timothy J -- Wilkins, Martin R -- 098424/Wellcome Trust/United Kingdom -- 101033/Wellcome Trust/United Kingdom -- MR/J0003042/1/Medical Research Council/United Kingdom -- P01 HL014985/HL/NHLBI NIH HHS/ -- PG/04/035/16912/British Heart Foundation/United Kingdom -- PG/10/59/28478/British Heart Foundation/United Kingdom -- PG/12/61/29818/British Heart Foundation/United Kingdom -- PG/2000137/British Heart Foundation/United Kingdom -- PG/95170/British Heart Foundation/United Kingdom -- PG/98018/British Heart Foundation/United Kingdom -- RG/10/16/28575/British Heart Foundation/United Kingdom -- WT098424AIA/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Aug 20;524(7565):356-60. doi: 10.1038/nature14620. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. ; Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK. ; Section of Epigenomics and Disease, Department of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. ; Department of Pediatrics and Medicine, Division of Critical Care Medicine and Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Denver, Colorado 80045, USA. ; Transgenics and Embryonic Stem Cell Laboratory, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK. ; Institute of Molecular Biology and Medicine, 3 Togolok Moldo Street, Bishkek 720040, Kyrgyzstan. ; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258299" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Congenic ; Anoxia/genetics/*metabolism ; Arterioles/metabolism ; Cation Transport Proteins/deficiency/genetics/*metabolism ; Cattle ; Cell Hypoxia ; Cell Proliferation ; Cells, Cultured ; Chromosomes, Mammalian/genetics ; Chronic Disease ; Female ; Gene Knockdown Techniques ; Homeostasis ; Humans ; Hypertension, Pulmonary/genetics/*metabolism ; Intracellular Space/metabolism ; Male ; Muscle, Smooth, Vascular/cytology/*metabolism ; Rats ; Rats, Inbred F344 ; Rats, Inbred WKY ; Zinc/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-06-02
    Description: Understanding the diversity of human tissues is fundamental to disease and requires linking genetic information, which is identical in most of an individual's cells, with epigenetic mechanisms that could have tissue-specific roles. Surveys of DNA methylation in human tissues have established a complex landscape including both tissue-specific and invariant methylation patterns. Here we report high coverage methylomes that catalogue cytosine methylation in all contexts for the major human organ systems, integrated with matched transcriptomes and genomic sequence. By combining these diverse data types with each individuals' phased genome, we identified widespread tissue-specific differential CG methylation (mCG), partially methylated domains, allele-specific methylation and transcription, and the unexpected presence of non-CG methylation (mCH) in almost all human tissues. mCH correlated with tissue-specific functions, and using this mark, we made novel predictions of genes that escape X-chromosome inactivation in specific tissues. Overall, DNA methylation in several genomic contexts varies substantially among human tissues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schultz, Matthew D -- He, Yupeng -- Whitaker, John W -- Hariharan, Manoj -- Mukamel, Eran A -- Leung, Danny -- Rajagopal, Nisha -- Nery, Joseph R -- Urich, Mark A -- Chen, Huaming -- Lin, Shin -- Lin, Yiing -- Jung, Inkyung -- Schmitt, Anthony D -- Selvaraj, Siddarth -- Ren, Bing -- Sejnowski, Terrence J -- Wang, Wei -- Ecker, Joseph R -- F32 HL110473/HL/NHLBI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- K99 HL119617/HL/NHLBI NIH HHS/ -- K99 NS080911/NS/NINDS NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- R00 NS080911/NS/NINDS NIH HHS/ -- R00NS080911/NS/NINDS NIH HHS/ -- R01 ES024984/ES/NIEHS NIH HHS/ -- T32 GM008666/GM/NIGMS NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 9;523(7559):212-6. doi: 10.1038/nature14465. Epub 2015 Jun 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA [2] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA. ; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Department of Cognitive Science, University of California, San Diego, La Jolla, California 92037, USA. ; Ludwig Institute for Cancer Research, La Jolla, California 92093, USA. ; Department of Genetics, Stanford University, 300 Pasteur Drive, M-344 Stanford, California 94305, USA. ; Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, St Louis, Missouri 63110, USA. ; Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Ludwig Institute for Cancer Research, La Jolla, California 92093, USA [2] University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, La Jolla, California 92093, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Division of Biological Sciences, University of California at San Diego, La Jolla, California 92037, USA [3] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA. ; 1] Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA [2] Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26030523" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Alleles ; Chromosome Mapping ; *DNA Methylation ; *Epigenesis, Genetic ; Female ; Gene Expression Profiling ; Gene Expression Regulation ; Genetic Variation ; Humans ; Male ; Organ Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...