ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Humans  (9)
  • Cell Line  (4)
  • Mass Spectrometry  (2)
  • Proteasome Endopeptidase Complex/*metabolism
  • Proteomics
  • American Association for the Advancement of Science (AAAS)  (10)
Collection
Keywords
Publisher
  • 1
    Publication Date: 2011-06-11
    Description: The evolutionarily conserved serine-threonine kinase mammalian target of rapamycin (mTOR) plays a critical role in regulating many pathophysiological processes. Functional characterization of the mTOR signaling pathways, however, has been hampered by the paucity of known substrates. We used large-scale quantitative phosphoproteomics experiments to define the signaling networks downstream of mTORC1 and mTORC2. Characterization of one mTORC1 substrate, the growth factor receptor-bound protein 10 (Grb10), showed that mTORC1-mediated phosphorylation stabilized Grb10, leading to feedback inhibition of the phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated, mitogen-activated protein kinase (ERK-MAPK) pathways. Grb10 expression is frequently down-regulated in various cancers, and loss of Grb10 and loss of the well-established tumor suppressor phosphatase PTEN appear to be mutually exclusive events, suggesting that Grb10 might be a tumor suppressor regulated by mTORC1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195509/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195509/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Yonghao -- Yoon, Sang-Oh -- Poulogiannis, George -- Yang, Qian -- Ma, Xiaoju Max -- Villen, Judit -- Kubica, Neil -- Hoffman, Gregory R -- Cantley, Lewis C -- Gygi, Steven P -- Blenis, John -- CA46595/CA/NCI NIH HHS/ -- GM051405/GM/NIGMS NIH HHS/ -- HG3456/HG/NHGRI NIH HHS/ -- R00 CA140789/CA/NCI NIH HHS/ -- R00 CA140789-04/CA/NCI NIH HHS/ -- R00CA140789/CA/NCI NIH HHS/ -- R01 GM041890/GM/NIGMS NIH HHS/ -- R01 GM051405/GM/NIGMS NIH HHS/ -- R01 GM051405-14/GM/NIGMS NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 HG003456/HG/NHGRI NIH HHS/ -- R01 HG003456-07/HG/NHGRI NIH HHS/ -- R37 CA046595/CA/NCI NIH HHS/ -- R37 CA046595-22/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 10;332(6035):1322-6. doi: 10.1126/science.1199484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21659605" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibiotics, Antineoplastic/pharmacology ; Cell Line ; GRB10 Adaptor Protein/*metabolism ; Humans ; Insulin/*metabolism ; Mice ; Molecular Sequence Data ; Multiprotein Complexes ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphoproteins/metabolism ; Phosphorylation/drug effects ; Proteins/*metabolism ; Proteome/metabolism ; *Signal Transduction/drug effects ; Sirolimus/pharmacology ; TOR Serine-Threonine Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-13
    Description: The reactivation of latent human cytomegalovirus (HCMV) infection after transplantation is associated with high morbidity and mortality. In vivo, myeloid cells and their progenitors are an important site of HCMV latency, whose establishment and/or maintenance require expression of the viral transcript UL138. Using stable isotope labeling by amino acids in cell culture-based mass spectrometry, we found a dramatic UL138-mediated loss of cell surface multidrug resistance-associated protein-1 (MRP1) and the reduction of substrate export by this transporter. Latency-associated loss of MRP1 and accumulation of the cytotoxic drug vincristine, an MRP1 substrate, depleted virus from naturally latent CD14(+) and CD34(+) progenitors, all of which are in vivo sites of latency. The UL138-mediated loss of MRP1 provides a marker for detecting latent HCMV infection and a therapeutic target for eliminating latently infected cells before transplantation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683642/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683642/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weekes, Michael P -- Tan, Shireen Y L -- Poole, Emma -- Talbot, Suzanne -- Antrobus, Robin -- Smith, Duncan L -- Montag, Christina -- Gygi, Steven P -- Sinclair, John H -- Lehner, Paul J -- 084957/Wellcome Trust/United Kingdom -- 084957/Z/08/Z/Wellcome Trust/United Kingdom -- 093966/Wellcome Trust/United Kingdom -- 093966/Z/10/Z/Wellcome Trust/United Kingdom -- 100140/Wellcome Trust/United Kingdom -- G0701279/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Apr 12;340(6129):199-202. doi: 10.1126/science.1235047.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23580527" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD34/analysis ; Cell Line, Tumor ; Cytomegalovirus/genetics/*physiology ; Cytomegalovirus Infections/*metabolism/*virology ; Dendritic Cells/physiology ; Down-Regulation ; Humans ; Lysosomes/metabolism ; Monocyte-Macrophage Precursor Cells/metabolism/virology ; Monocytes/metabolism/virology ; Multidrug Resistance-Associated Proteins/genetics/*metabolism ; Vincristine/metabolism/pharmacology ; Viral Proteins/*metabolism ; *Virus Latency
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-02-21
    Description: The Sir2 deacetylase modulates organismal life-span in various species. However, the molecular mechanisms by which Sir2 increases longevity are largely unknown. We show that in mammalian cells, the Sir2 homolog SIRT1 appears to control the cellular response to stress by regulating the FOXO family of Forkhead transcription factors, a family of proteins that function as sensors of the insulin signaling pathway and as regulators of organismal longevity. SIRT1 and the FOXO transcription factor FOXO3 formed a complex in cells in response to oxidative stress, and SIRT1 deacetylated FOXO3 in vitro and within cells. SIRT1 had a dual effect on FOXO3 function: SIRT1 increased FOXO3's ability to induce cell cycle arrest and resistance to oxidative stress but inhibited FOXO3's ability to induce cell death. Thus, one way in which members of the Sir2 family of proteins may increase organismal longevity is by tipping FOXO-dependent responses away from apoptosis and toward stress resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brunet, Anne -- Sweeney, Lora B -- Sturgill, J Fitzhugh -- Chua, Katrin F -- Greer, Paul L -- Lin, Yingxi -- Tran, Hien -- Ross, Sarah E -- Mostoslavsky, Raul -- Cohen, Haim Y -- Hu, Linda S -- Cheng, Hwei-Ling -- Jedrychowski, Mark P -- Gygi, Steven P -- Sinclair, David A -- Alt, Frederick W -- Greenberg, Michael E -- NIHP30-HD18655/HD/NICHD NIH HHS/ -- P01 NS35138-17/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 26;303(5666):2011-5. Epub 2004 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, and Department of Neurobiology, Center for Blood Research (CBR) Institute for Biomedical Research, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976264" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Apoptosis ; Cell Cycle ; Cell Line ; Cell Nucleus/metabolism ; Cells, Cultured ; Cerebellum/cytology ; Forkhead Transcription Factors ; Gene Expression Profiling ; Gene Expression Regulation ; Histone Deacetylases/genetics/*metabolism ; Humans ; Intracellular Signaling Peptides and Proteins ; Mice ; Mice, Knockout ; Neurons/cytology ; *Oxidative Stress ; Phosphorylation ; Proteins/genetics ; Recombinant Proteins/metabolism ; Sirtuin 1 ; Sirtuins/genetics/*metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-05-26
    Description: The BRCT repeats of the breast and ovarian cancer predisposition protein BRCA1 are essential for tumor suppression. Phosphopeptide affinity proteomic analysis identified a protein, Abraxas, that directly binds the BRCA1 BRCT repeats through a phospho-Ser-X-X-Phe motif. Abraxas binds BRCA1 to the mutual exclusion of BACH1 (BRCA1-associated C-terminal helicase) and CtIP (CtBP-interacting protein), forming a third type of BRCA1 complex. Abraxas recruits the ubiquitin-interacting motif (UIM)-containing protein RAP80 to BRCA1. Both Abraxas and RAP80 were required for DNA damage resistance, G(2)-M checkpoint control, and DNA repair. RAP80 was required for optimal accumulation of BRCA1 on damaged DNA (foci) in response to ionizing radiation, and the UIM domains alone were capable of foci formation. The RAP80-Abraxas complex may help recruit BRCA1 to DNA damage sites in part through recognition of ubiquitinated proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573690/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573690/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Bin -- Matsuoka, Shuhei -- Ballif, Bryan A -- Zhang, Dong -- Smogorzewska, Agata -- Gygi, Steven P -- Elledge, Stephen J -- 1KO1, CA116275-01/CA/NCI NIH HHS/ -- 1U19A1067751/PHS HHS/ -- T32CA09216/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2007 May 25;316(5828):1194-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Center for Genetics and Genomics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525340" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; BRCA1 Protein/*physiology ; Carrier Proteins/*physiology ; Cell Line, Tumor ; *DNA Damage ; *DNA Repair ; HeLa Cells ; Humans ; Mass Spectrometry ; Molecular Sequence Data ; Nuclear Proteins/*physiology ; Protein Binding ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-05-26
    Description: Cellular responses to DNA damage are mediated by a number of protein kinases, including ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related). The outlines of the signal transduction portion of this pathway are known, but little is known about the physiological scope of the DNA damage response (DDR). We performed a large-scale proteomic analysis of proteins phosphorylated in response to DNA damage on consensus sites recognized by ATM and ATR and identified more than 900 regulated phosphorylation sites encompassing over 700 proteins. Functional analysis of a subset of this data set indicated that this list is highly enriched for proteins involved in the DDR. This set of proteins is highly interconnected, and we identified a large number of protein modules and networks not previously linked to the DDR. This database paints a much broader landscape for the DDR than was previously appreciated and opens new avenues of investigation into the responses to DNA damage in mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsuoka, Shuhei -- Ballif, Bryan A -- Smogorzewska, Agata -- McDonald, E Robert 3rd -- Hurov, Kristen E -- Luo, Ji -- Bakalarski, Corey E -- Zhao, Zhenming -- Solimini, Nicole -- Lerenthal, Yaniv -- Shiloh, Yosef -- Gygi, Steven P -- Elledge, Stephen J -- 1U19A1067751/PHS HHS/ -- New York, N.Y. -- Science. 2007 May 25;316(5828):1160-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Center for Genetics and Genomics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525332" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; Binding Sites ; Cell Cycle/physiology ; Cell Cycle Proteins/*physiology ; Cell Line ; Computational Biology ; Consensus Sequence ; *DNA Damage ; *DNA Repair ; DNA Replication/physiology ; DNA-Binding Proteins/*physiology ; Humans ; Immunoprecipitation ; Isotope Labeling ; Mice ; NIH 3T3 Cells ; Phosphorylation ; Protein-Serine-Threonine Kinases/*physiology ; Proteome/isolation & purification/physiology ; RNA, Small Interfering ; Signal Transduction ; Substrate Specificity ; Tumor Suppressor Proteins/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-07-07
    Description: The airway epithelium plays an essential role in innate immunity to lung pathogens. Ribonucleoprotein particles primarily composed of major vault protein (MVP) are highly expressed in cells that encounter xenobiotics. However, a clear biologic function for MVP is not established. We report here that MVP is rapidly recruited to lipid rafts when human lung epithelial cells are infected with Pseudomonas aeruginosa, and maximal recruitment is dependent on bacterial binding to the cystic fibrosis transmembrane conductance regulator. MVP was also essential for optimal epithelial cell internalization and clearance of P. aeruginosa. These results suggest that MVP makes a substantial contribution to epithelial cell-mediated resistance to infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685177/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685177/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kowalski, Michael P -- Dubouix-Bourandy, Anne -- Bajmoczi, Milan -- Golan, David E -- Zaidi, Tanweer -- Coutinho-Sledge, Yamara S -- Gygi, Melanie P -- Gygi, Steven P -- Wiemer, Erik A C -- Pier, Gerald B -- R01 HL 58398-08/HL/NHLBI NIH HHS/ -- R01 HL058398/HL/NHLBI NIH HHS/ -- R37 HL 32854-22/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2007 Jul 6;317(5834):130-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17615361" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cystic Fibrosis Transmembrane Conductance Regulator/genetics/metabolism ; Epithelial Cells/metabolism/microbiology ; Humans ; Immunity, Innate ; Lung/immunology/microbiology ; Lung Diseases/*immunology/metabolism/microbiology ; Membrane Microdomains/metabolism ; Mice ; Pseudomonas Infections/*immunology/metabolism/microbiology ; Pseudomonas aeruginosa/*immunology/metabolism ; RNA, Small Interfering/genetics ; Respiratory Mucosa/immunology/*metabolism/*microbiology ; Signal Transduction ; Vault Ribonucleoprotein Particles/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-10-04
    Description: The protein modifier ubiquitin is a signal for proteasome-mediated degradation in eukaryotes. Proteasome-bearing prokaryotes have been thought to degrade proteins via a ubiquitin-independent pathway. We have identified a prokaryotic ubiquitin-like protein, Pup (Rv2111c), which was specifically conjugated to proteasome substrates in the pathogen Mycobacterium tuberculosis. Pupylation occurred on lysines and required proteasome accessory factor A (PafA). In a pafA mutant, pupylated proteins were absent and substrates accumulated, thereby connecting pupylation with degradation. Although analogous to ubiquitylation, pupylation appears to proceed by a different chemistry. Thus, like eukaryotes, bacteria may use a small-protein modifier to control protein stability.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698935/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698935/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearce, Michael J -- Mintseris, Julian -- Ferreyra, Jessica -- Gygi, Steven P -- Darwin, K Heran -- 5T32AI07189-25/AI/NIAID NIH HHS/ -- AI065437/AI/NIAID NIH HHS/ -- GM67945/GM/NIGMS NIH HHS/ -- HG3456/HG/NHGRI NIH HHS/ -- HG3616/HG/NHGRI NIH HHS/ -- HL092774/HL/NHLBI NIH HHS/ -- R01 HL092774/HL/NHLBI NIH HHS/ -- R01 HL092774-01/HL/NHLBI NIH HHS/ -- R01 HL092774-02/HL/NHLBI NIH HHS/ -- R56 AI065437/AI/NIAID NIH HHS/ -- R56 AI065437-01A2/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2008 Nov 14;322(5904):1104-7. doi: 10.1126/science.1163885. Epub 2008 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18832610" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/genetics/*metabolism ; Amino Acid Motifs ; Bacterial Proteins/chemistry/genetics/isolation & purification/*metabolism ; Glutamic Acid/metabolism ; Glutamine/metabolism ; Glycine/metabolism ; Lysine/metabolism ; Mass Spectrometry ; Molecular Sequence Data ; Mutation ; Mycobacterium smegmatis/metabolism ; Mycobacterium tuberculosis/genetics/*metabolism ; Proteasome Endopeptidase Complex/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Ubiquitination ; Ubiquitins/chemistry/genetics/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-07-25
    Description: Mammalian mitochondria contain about 1100 proteins, nearly 300 of which are uncharacterized. Given the well-established role of mitochondrial defects in human disease, functional characterization of these proteins may shed new light on disease mechanisms. Starting with yeast as a model system, we investigated an uncharacterized but highly conserved mitochondrial protein (named here Sdh5). Both yeast and human Sdh5 interact with the catalytic subunit of the succinate dehydrogenase (SDH) complex, a component of both the electron transport chain and the tricarboxylic acid cycle. Sdh5 is required for SDH-dependent respiration and for Sdh1 flavination (incorporation of the flavin adenine dinucleotide cofactor). Germline loss-of-function mutations in the human SDH5 gene, located on chromosome 11q13.1, segregate with disease in a family with hereditary paraganglioma, a neuroendocrine tumor previously linked to mutations in genes encoding SDH subunits. Thus, a mitochondrial proteomics analysis in yeast has led to the discovery of a human tumor susceptibility gene.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3881419/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3881419/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hao, Huai-Xiang -- Khalimonchuk, Oleh -- Schraders, Margit -- Dephoure, Noah -- Bayley, Jean-Pierre -- Kunst, Henricus -- Devilee, Peter -- Cremers, Cor W R J -- Schiffman, Joshua D -- Bentz, Brandon G -- Gygi, Steven P -- Winge, Dennis R -- Kremer, Hannie -- Rutter, Jared -- DK071962/DK/NIDDK NIH HHS/ -- GM087346/GM/NIGMS NIH HHS/ -- R01 ES003817/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 2009 Aug 28;325(5944):1139-42. doi: 10.1126/science.1175689. Epub 2009 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19628817" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Cell Line, Tumor ; Female ; Flavin-Adenine Dinucleotide/metabolism ; Flavoproteins/metabolism ; *Germ-Line Mutation ; Haplotypes ; Humans ; Inheritance Patterns ; Male ; Mitochondria/*metabolism ; Mitochondrial Proteins/chemistry/*genetics/metabolism ; Molecular Sequence Data ; Oxygen Consumption ; Paraganglioma/*genetics ; Pedigree ; Protein Subunits/metabolism ; Proteomics ; Saccharomyces cerevisiae/*genetics/growth & development/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*genetics/*metabolism ; Succinate Dehydrogenase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-05-26
    Description: Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690818/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690818/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bricker, Daniel K -- Taylor, Eric B -- Schell, John C -- Orsak, Thomas -- Boutron, Audrey -- Chen, Yu-Chan -- Cox, James E -- Cardon, Caleb M -- Van Vranken, Jonathan G -- Dephoure, Noah -- Redin, Claire -- Boudina, Sihem -- Gygi, Steven P -- Brivet, Michele -- Thummel, Carl S -- Rutter, Jared -- K99 AR059190/AR/NIAMS NIH HHS/ -- K99AR059190/AR/NIAMS NIH HHS/ -- P30 HL101310/HL/NHLBI NIH HHS/ -- P30DK072437/DK/NIDDK NIH HHS/ -- R01 DK071962/DK/NIDDK NIH HHS/ -- R01 GM087346/GM/NIGMS NIH HHS/ -- R01 GM094232/GM/NIGMS NIH HHS/ -- R01GM083746/GM/NIGMS NIH HHS/ -- R24 DK092784/DK/NIDDK NIH HHS/ -- R24DK092784/DK/NIDDK NIH HHS/ -- RC1DK086426/DK/NIDDK NIH HHS/ -- T32GM007464/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jul 6;337(6090):96-100. doi: 10.1126/science.1218099. Epub 2012 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22628558" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/metabolism ; Animals ; Anion Transport Proteins/chemistry/genetics/*metabolism ; Biological Transport ; Carbohydrate Metabolism ; Citric Acid Cycle ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/chemistry/genetics/*metabolism ; Humans ; Metabolomics ; Mitochondria/*metabolism ; Mitochondrial Membrane Transport Proteins/chemistry/genetics/*metabolism ; Mitochondrial Membranes/*metabolism ; Mitochondrial Proteins/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Oxidation-Reduction ; Point Mutation ; Pyruvic Acid/*metabolism ; Saccharomyces cerevisiae/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-05-09
    Description: Efforts to identify host determinants for malaria have been hindered by the absence of a nucleus in erythrocytes, which precludes genetic manipulation in the cell in which the parasite replicates. We used cultured red blood cells derived from hematopoietic stem cells to carry out a forward genetic screen for Plasmodium falciparum host determinants. We found that CD55 is an essential host factor for P. falciparum invasion. CD55-null erythrocytes were refractory to invasion by all isolates of P. falciparum because parasites failed to attach properly to the erythrocyte surface. Thus, CD55 is an attractive target for the development of malaria therapeutics. Hematopoietic stem cell-based forward genetic screens may be valuable for the identification of additional host determinants of malaria pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465434/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465434/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Egan, Elizabeth S -- Jiang, Rays H Y -- Moechtar, Mischka A -- Barteneva, Natasha S -- Weekes, Michael P -- Nobre, Luis V -- Gygi, Steven P -- Paulo, Joao A -- Frantzreb, Charles -- Tani, Yoshihiko -- Takahashi, Junko -- Watanabe, Seishi -- Goldberg, Jonathan -- Paul, Aditya S -- Brugnara, Carlo -- Root, David E -- Wiegand, Roger C -- Doench, John G -- Duraisingh, Manoj T -- 100140/Wellcome Trust/United Kingdom -- 1K08AI103034-01A1/AI/NIAID NIH HHS/ -- K01 DK098285/DK/NIDDK NIH HHS/ -- K01DK098285/DK/NIDDK NIH HHS/ -- K08 AI103034/AI/NIAID NIH HHS/ -- K12-HD000850/HD/NICHD NIH HHS/ -- R01AI091787/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 May 8;348(6235):711-4. doi: 10.1126/science.aaa3526.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA. ; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. Department of Global Health and Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL, USA. ; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. ; Department of Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. ; Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK. ; Department of Cell Biology, Harvard Medical School, Boston, MA, USA. ; Japanese Red Cross Kinki Block Blood Center, Osaka, Japan. ; Japanese Red Cross Kyushu Block Blood Center, Fukuoka, Japan. ; Department of Laboratory Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA. ; The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA. ; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA. mduraisi@hsph.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25954012" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD44/genetics ; Antigens, CD55/*genetics ; Cell Differentiation/genetics ; Cells, Cultured ; Erythrocytes/cytology/metabolism/*parasitology ; Genetic Testing ; Hematopoietic Stem Cells/cytology ; Host-Parasite Interactions/*genetics ; Humans ; Malaria, Falciparum/*genetics/*parasitology ; Plasmodium falciparum/*pathogenicity ; RNA, Small Interfering/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...