ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (80)
  • Transcription, Genetic  (65)
  • American Association for the Advancement of Science (AAAS)  (137)
  • American Chemical Society
  • International Union of Crystallography (IUCr)
  • 1985-1989  (124)
  • 1980-1984  (13)
  • 1945-1949
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (137)
  • American Chemical Society
  • International Union of Crystallography (IUCr)
Years
Year
  • 1
    Publication Date: 1981-12-04
    Description: A DNA sequence coding for the immunogenic capsid protein VP3 of foot-and-mouth disease virus A12, prepared from the virion RNA, was ligated to a plasmid designed to express a chimeric protein from the Escherichia coli tryptophan promoter-operator system. When Escherichia coli transformed with this plasmid was grown in tryptophan-depleted media, approximately 17 percent of the total cellular protein was found to be an insoluble and stable chimeric protein. The purified chimeric protein competed equally on a molar basis with VP3 for specific antibodies to foot-and-mouth disease virus. When inoculated into six cattle and two swine, this protein elicited high levels of neutralizing antibody and protection against challenge with foot-and-mouth disease virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kleid, D G -- Yansura, D -- Small, B -- Dowbenko, D -- Moore, D M -- Grubman, M J -- McKercher, P D -- Morgan, D O -- Robertson, B H -- Bachrach, H L -- New York, N.Y. -- Science. 1981 Dec 4;214(4525):1125-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6272395" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibody Formation ; Base Sequence ; Cattle ; Cattle Diseases/*prevention & control ; *Cloning, Molecular ; DNA Restriction Enzymes ; DNA, Recombinant/metabolism ; Foot-and-Mouth Disease/*prevention & control ; Immunity, Cellular ; Protein Biosynthesis ; Swine ; Swine Diseases/*prevention & control ; Transcription, Genetic ; *Vaccines ; Viral Proteins/genetics/*therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1989-08-18
    Description: CD4 is a cell surface glycoprotein that is thought to interact with nonpolymorphic determinants of class II major histocompatibility (MHC) molecules. CD4 is also the receptor for the human immunodeficiency virus (HIV), binding with high affinity to the HIV-1 envelope glycoprotein, gp120. Homolog-scanning mutagenesis was used to identify CD4 regions that are important in class II MHC binding and to determine whether the gp120 and class II MHC binding sites of CD4 are related. Class II MHC binding was abolished by mutations in each of the first three immunoglobulin-like domains of CD4. The gp120 binding could be abolished without affecting class II MHC binding and vice versa, although at least one mutation examined reduced both functions significantly. These findings indicate that, while there may be overlap between the gp120 and class II MHC binding sites of CD4, these sites are distinct and can be separated. Thus it should be possible to design CD4 analogs that can block HIV infectivity but intrinsically lack the ability to affect the normal immune response by binding to class II MHC molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamarre, D -- Ashkenazi, A -- Fleury, S -- Smith, D H -- Sekaly, R P -- Capon, D J -- New York, N.Y. -- Science. 1989 Aug 18;245(4919):743-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montreal, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2549633" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Surface ; Binding Sites ; DNA, Recombinant ; HIV/*metabolism ; HIV Envelope Protein gp120 ; HLA-DP Antigens/immunology ; Histocompatibility Antigens Class II/*immunology ; Humans ; Hybridomas ; Mice ; Molecular Sequence Data ; Mutation ; Receptors, HIV ; Receptors, Virus/genetics/immunology/*metabolism ; Retroviridae Proteins/immunology/*metabolism ; Rosette Formation ; Structure-Activity Relationship ; T-Lymphocytes/immunology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1989-04-07
    Description: Three cellular homologs of the v-erbA oncogene were previously identified in the rat; two of them encode high affinity receptors for the thyroid hormone triiodothyronine (T3). A rat complementary DNA clone encoding a T3 receptor form of the ErbA protein, called r-ErbA beta-2, was isolated. The r-ErbA beta-2 protein differs at its amino terminus from the previously described rat protein encoded by c-erbA beta and referred to as r-ErbA beta-1. Unlike the other members of the c-erbA proto-oncogene family, which have a wide tissue distribution, r-erbA beta-2 appears to be expressed only in the anterior pituitary gland. In addition, thyroid hormone downregulates r-erbA beta-2 messenger RNA but not r-erbA beta-1 messenger RNA in a pituitary tumor-derived cell line. The presence of a pituitary-specific form of the thyroid hormone receptor that may be selectively regulated by thyroid hormone could be important for the differential regulation of gene expression by T3 in the pituitary gland.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hodin, R A -- Lazar, M A -- Wintman, B I -- Darling, D S -- Koenig, R J -- Larsen, P R -- Moore, D D -- Chin, W W -- New York, N.Y. -- Science. 1989 Apr 7;244(4900):76-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Brigham and Women's Hospital, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2539642" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Cloning, Molecular ; DNA/isolation & purification ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Organ Specificity ; Pituitary Gland, Anterior/*metabolism ; Proto-Oncogene Proteins/genetics/*isolation & purification ; Rats ; Receptors, Thyroid Hormone/genetics/*isolation & purification ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1988-07-15
    Description: In a study of the immunologic significance of the genetic diversity present within single isolates of human immunodeficiency virus type 1 (HIV-1), the neutralization of viruses derived from molecular clones of the HIV-1 strain HTLV-IIIB by an extensive panel of sera was compared. Sera from HIV-1-infected patients and from goats immunized with polyacrylamide gel-purified HIV-1 envelope glycoprotein (gp120), native gp120, or gp120-derived recombinant peptides, showed marked heterogeneity in neutralizing activity against these closely related viruses. The change of a single amino acid residue in gp120 may account for such "clonal restriction" of neutralizing activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Looney, D J -- Fisher, A G -- Putney, S D -- Rusche, J R -- Redfield, R R -- Burke, D S -- Gallo, R C -- Wong-Staal, F -- New York, N.Y. -- Science. 1988 Jul 15;241(4863):357-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Viral Diseases, Walter Reed Army Institute of Research, Washington, DC 20307.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3388046" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Viral/*immunology ; Binding, Competitive ; Cloning, Molecular ; HIV/genetics/*immunology ; HIV Seropositivity/immunology ; Humans ; Molecular Sequence Data ; Neutralization Tests ; Oligopeptides/chemical synthesis/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1987-10-23
    Description: The complete germline organization of the beta-chain genes of the murine T cell receptor was elucidated in order to obtain the structural basis for understanding the mechanisms of somatic DNA rearrangements. Twenty of the 22 known variable (V beta) genes are clustered within 250 kilobases of DNA 5' to the constant region (C beta) genes. These V beta genes share the same transcriptional orientation as the diversity (D beta), joining (J beta), and C beta genes, which implies that chromosomal deletion is the mechanism for most V beta to D beta-J beta rearrangements. Within this V beta cluster, the distance between the most proximal V beta gene and the D beta-J beta-C beta cluster is 320 kilobases, as determined by field-inversion gel electrophoresis. The large distance between V beta and D beta, relative to that between D beta and J beta, may have significant implications for the ordered rearrangement of the T cell receptor beta-chain genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chou, H S -- Nelson, C A -- Godambe, S A -- Chaplin, D D -- Loh, D Y -- GM07067/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1987 Oct 23;238(4826):545-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2821625" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Deletion ; Chromosome Mapping ; DNA/genetics ; DNA Restriction Enzymes ; Electrophoresis ; Macromolecular Substances ; Mice ; Mice, Inbred BALB C ; Mice, Mutant Strains ; Nucleic Acid Hybridization ; Receptors, Antigen, T-Cell/*genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1988-04-22
    Description: In the parasitic wasp, Nasonia vitripennis, males are haploid and usually develop from unfertilized eggs, whereas females are diploid and develop from fertilized eggs. Some individuals in this species carry a genetic element, termed psr (paternal sex ratio), which is transmitted through sperm and causes condensation and subsequent loss of paternal chromosomes in fertilized eggs, thus converting diploid females into haploid males. In this report the psr trait was shown to be caused by a supernumerary chromosome. This B chromosome contains at least three repetitive DNA sequences that do not cross-hybridize to each other or to the host genome. The psr chromosome apparently produces a trans-acting product responsible for condensation of the paternal chromosomes, but is itself insensitive to the effect. Because the psr chromosome enhances its transmission by eliminating the rest of the genome, it can be considered the most "selfish" genetic element yet described.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nur, U -- Werren, J H -- Eickbush, D G -- Burke, W D -- Eickbush, T H -- GM31867/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Apr 22;240(4851):512-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Rochester, NY 14627.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3358129" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromosomes/*physiology ; Cloning, Molecular ; DNA, Satellite ; Diploidy ; Haploidy ; Hymenoptera/*genetics ; Molecular Sequence Data ; Repetitive Sequences, Nucleic Acid ; Sex Determination Analysis ; *Sex Ratio ; Wasps/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1988-03-11
    Description: The expression of human immunodeficiency virus (HIV) after T cell activation is regulated by NF-kappa B, an inducible DNA-binding protein that stimulates transcription. Proteins encoded by a variety of DNA viruses are also able to activate expression from the HIV enhancer. To determine how this activation occurs, specific genes from herpes simplex virus type 1 and adenovirus that activate HIV in T lymphoma cells have been identified. The cis-acting regulatory sequences in the HIV enhancer that mediate their effect have also been characterized. The relevant genes are those for ICP0-an immediate-early product of herpes simplex virus type 1-and the form of E1A encoded by the 13S messenger RNA of adenovirus. Activation of HIV by adenovirus E1A was found to depend on the TATA box, whereas herpesvirus ICP0 did not work through a single defined cis-acting element. These findings suggest multiple pathways that can be used to bypass normal cellular activation of HIV, and they raise the possibility that infection by herpes simplex virus or adenovirus may directly contribute to the activation of HIV in acquired immunodeficiency syndrome by mechanisms independent of antigenic stimulation in T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nabel, G J -- Rice, S A -- Knipe, D M -- Baltimore, D -- AI20530/AI/NIAID NIH HHS/ -- F32GM11224/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Mar 11;239(4845):1299-302.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2830675" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviruses, Human/genetics ; *Enhancer Elements, Genetic ; Genes, Regulator ; *Genes, Viral ; HIV/*genetics/growth & development ; Humans ; *Lymphocyte Activation ; Plasmids ; Simplexvirus/genetics ; T-Lymphocytes/*immunology ; Transcription, Genetic ; Virus Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-09-23
    Description: The developmental regulation of two kinds of Xenopus 5S RNA genes (oocyte and somatic types) can be explained by differences in the stability of protein-protein and protein-DNA interactions in a transcription complex that directs transcription initiation by RNA polymerase III. Dissociation of transcription factors from oocyte 5S RNA genes during development allows them to be repressed by chromatin assembly. In the same cells, somatic 5S RNA genes remain active because their transcription complexes are stable.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wolffe, A P -- Brown, D D -- GM22395/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Sep 23;241(4873):1626-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3420414" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Chromatin ; DNA/physiology ; DNA Replication ; *Gene Expression Regulation ; Genes ; Oocytes/cytology/ultrastructure ; RNA, Ribosomal/*genetics ; RNA, Ribosomal, 5S/*genetics ; Transcription Factor TFIIIA ; Transcription Factor TFIIIB ; Transcription Factors/genetics ; *Transcription Factors, TFIII ; Transcription, Genetic ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1989-12-22
    Description: Certain inflammatory stimuli render cultured human vascular endothelial cells hyperadhesive for neutrophils. This state is transient and reversible, in part because activated endothelial cells secrete a leukocyte adhesion inhibitor (LAI). LAI was identified as endothelial interleukin-8 (IL-8), the predominant species of which is an extended amino-terminal IL-8 variant. At nanomolar concentrations, purified endothelial IL-8 and recombinant human IL-8 inhibit neutrophil adhesion to cytokine-activated endothelial monolayers and protect these monolayers from neutrophil-mediated damage. These findings suggest that endothelial-derived IL-8 may function to attenuate inflammatory events at the interface between vessel wall and blood.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gimbrone, M A Jr -- Obin, M S -- Brock, A F -- Luis, E A -- Hass, P E -- Hebert, C A -- Yip, Y K -- Leung, D W -- Lowe, D G -- Kohr, W J -- P01-HL-36028/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Dec 22;246(4937):1601-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2688092" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Factors/pharmacology ; Cell Adhesion/drug effects ; Cells, Cultured ; Chemotactic Factors/*isolation & purification/pharmacology ; Culture Media/analysis ; Cytokines ; Endothelium, Vascular/cytology/drug effects/*physiology ; Humans ; Interleukin-1/*pharmacology ; Interleukin-8 ; Interleukins/*isolation & purification/pharmacology ; Molecular Sequence Data ; Neutrophils/cytology/drug effects/*physiology ; Recombinant Proteins/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1989-12-08
    Description: A novel bacteriophage lambda vector system was used to express in Escherichia coli a combinatorial library of Fab fragments of the mouse antibody repertoire. The system allows rapid and easy identification of monoclonal Fab fragments in a form suitable for genetic manipulation. It was possible to generate, in 2 weeks, large numbers of monoclonal Fab fragments against a transition state analog hapten. The methods described may supersede present-day hybridoma technology and facilitate the production of catalytic and other antibodies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huse, W D -- Sastry, L -- Iverson, S A -- Kang, A S -- Alting-Mees, M -- Burton, D R -- Benkovic, S J -- Lerner, R A -- New York, N.Y. -- Science. 1989 Dec 8;246(4935):1275-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2531466" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/*biosynthesis/genetics ; Antibody Specificity ; Antigen-Antibody Reactions ; Bacteriophage lambda/*genetics ; Base Sequence ; Cloning, Molecular/methods ; Escherichia coli/genetics ; Gene Amplification ; Gene Library ; *Genetic Vectors ; Hemocyanin/analogs & derivatives/immunology ; Immunoglobulin Fab Fragments/biosynthesis ; Immunoglobulin Fragments/*biosynthesis/genetics ; Mice ; Molecular Sequence Data ; Organophosphorus Compounds/immunology ; Recombinant Proteins/biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...