ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Base Sequence  (358)
  • American Association for the Advancement of Science (AAAS)  (358)
  • Elsevier
  • 2000-2004  (58)
  • 1990-1994  (254)
  • 1980-1984  (43)
  • 1975-1979  (3)
  • 1940-1944
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (358)
  • Elsevier
Years
Year
  • 1
    Publication Date: 2002-12-14
    Description: The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dehal, Paramvir -- Satou, Yutaka -- Campbell, Robert K -- Chapman, Jarrod -- Degnan, Bernard -- De Tomaso, Anthony -- Davidson, Brad -- Di Gregorio, Anna -- Gelpke, Maarten -- Goodstein, David M -- Harafuji, Naoe -- Hastings, Kenneth E M -- Ho, Isaac -- Hotta, Kohji -- Huang, Wayne -- Kawashima, Takeshi -- Lemaire, Patrick -- Martinez, Diego -- Meinertzhagen, Ian A -- Necula, Simona -- Nonaka, Masaru -- Putnam, Nik -- Rash, Sam -- Saiga, Hidetoshi -- Satake, Masanobu -- Terry, Astrid -- Yamada, Lixy -- Wang, Hong-Gang -- Awazu, Satoko -- Azumi, Kaoru -- Boore, Jeffrey -- Branno, Margherita -- Chin-Bow, Stephen -- DeSantis, Rosaria -- Doyle, Sharon -- Francino, Pilar -- Keys, David N -- Haga, Shinobu -- Hayashi, Hiroko -- Hino, Kyosuke -- Imai, Kaoru S -- Inaba, Kazuo -- Kano, Shungo -- Kobayashi, Kenji -- Kobayashi, Mari -- Lee, Byung-In -- Makabe, Kazuhiro W -- Manohar, Chitra -- Matassi, Giorgio -- Medina, Monica -- Mochizuki, Yasuaki -- Mount, Steve -- Morishita, Tomomi -- Miura, Sachiko -- Nakayama, Akie -- Nishizaka, Satoko -- Nomoto, Hisayo -- Ohta, Fumiko -- Oishi, Kazuko -- Rigoutsos, Isidore -- Sano, Masako -- Sasaki, Akane -- Sasakura, Yasunori -- Shoguchi, Eiichi -- Shin-i, Tadasu -- Spagnuolo, Antoinetta -- Stainier, Didier -- Suzuki, Miho M -- Tassy, Olivier -- Takatori, Naohito -- Tokuoka, Miki -- Yagi, Kasumi -- Yoshizaki, Fumiko -- Wada, Shuichi -- Zhang, Cindy -- Hyatt, P Douglas -- Larimer, Frank -- Detter, Chris -- Doggett, Norman -- Glavina, Tijana -- Hawkins, Trevor -- Richardson, Paul -- Lucas, Susan -- Kohara, Yuji -- Levine, Michael -- Satoh, Nori -- Rokhsar, Daniel S -- HD-37105/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2002 Dec 13;298(5601):2157-67.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12481130" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Apoptosis ; Base Sequence ; Cellulose/metabolism ; Central Nervous System/physiology ; Ciona intestinalis/anatomy & histology/classification/*genetics/physiology ; Computational Biology ; Endocrine System/physiology ; Gene Dosage ; Gene Duplication ; Genes ; Genes, Homeobox ; *Genome ; Heart/embryology/physiology ; Immunity/genetics ; Molecular Sequence Data ; Multigene Family ; Muscle Proteins/genetics ; Organizers, Embryonic/physiology ; Phylogeny ; Polymorphism, Genetic ; Proteins/genetics/physiology ; *Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Species Specificity ; Thyroid Gland/physiology ; Urochordata/genetics ; Vertebrates/anatomy & histology/classification/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1981-12-04
    Description: A DNA sequence coding for the immunogenic capsid protein VP3 of foot-and-mouth disease virus A12, prepared from the virion RNA, was ligated to a plasmid designed to express a chimeric protein from the Escherichia coli tryptophan promoter-operator system. When Escherichia coli transformed with this plasmid was grown in tryptophan-depleted media, approximately 17 percent of the total cellular protein was found to be an insoluble and stable chimeric protein. The purified chimeric protein competed equally on a molar basis with VP3 for specific antibodies to foot-and-mouth disease virus. When inoculated into six cattle and two swine, this protein elicited high levels of neutralizing antibody and protection against challenge with foot-and-mouth disease virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kleid, D G -- Yansura, D -- Small, B -- Dowbenko, D -- Moore, D M -- Grubman, M J -- McKercher, P D -- Morgan, D O -- Robertson, B H -- Bachrach, H L -- New York, N.Y. -- Science. 1981 Dec 4;214(4525):1125-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6272395" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibody Formation ; Base Sequence ; Cattle ; Cattle Diseases/*prevention & control ; *Cloning, Molecular ; DNA Restriction Enzymes ; DNA, Recombinant/metabolism ; Foot-and-Mouth Disease/*prevention & control ; Immunity, Cellular ; Protein Biosynthesis ; Swine ; Swine Diseases/*prevention & control ; Transcription, Genetic ; *Vaccines ; Viral Proteins/genetics/*therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-03-08
    Description: Yeast artificial chromosomes (YACs) were obtained from a 550-kilobase region that contains three probes previously mapped as very close to the locus of the fragile X syndrome. These YACs spanned the fragile site in Xq27.3 as shown by fluorescent in situ hybridization. An internal 200-kilobase segment contained four chromosomal breakpoints generated by induction of fragile X expression. A single CpG island was identified in the cloned region between markers DXS463 and DXS465 that appears methylated in mentally retarded fragile X males, but not in nonexpressing male carriers of the mutation nor in normal males. This CpG island may indicate the presence of a gene involved in the clinical phenotype of the syndrome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heitz, D -- Rousseau, F -- Devys, D -- Saccone, S -- Abderrahim, H -- Le Paslier, D -- Cohen, D -- Vincent, A -- Toniolo, D -- Della Valle, G -- New York, N.Y. -- Science. 1991 Mar 8;251(4998):1236-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Genetique Moleculaire des Eucaryotes du CNRS, Institut de Chimie Biologique, Faculte de Medecine, Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2006411" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromosomes, Fungal ; Cloning, Molecular ; DNA Probes ; *Dinucleoside Phosphates ; Fragile X Syndrome/*genetics ; Humans ; Male ; Molecular Sequence Data ; Mutation ; Nucleic Acid Hybridization ; Oligonucleotide Probes ; Polymerase Chain Reaction ; Reference Values ; Restriction Mapping ; Saccharomyces cerevisiae/genetics ; *X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-05-06
    Description: We sequenced the 29,751-base genome of the severe acute respiratory syndrome (SARS)-associated coronavirus known as the Tor2 isolate. The genome sequence reveals that this coronavirus is only moderately related to other known coronaviruses, including two human coronaviruses, HCoV-OC43 and HCoV-229E. Phylogenetic analysis of the predicted viral proteins indicates that the virus does not closely resemble any of the three previously known groups of coronaviruses. The genome sequence will aid in the diagnosis of SARS virus infection in humans and potential animal hosts (using polymerase chain reaction and immunological tests), in the development of antivirals (including neutralizing antibodies), and in the identification of putative epitopes for vaccine development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marra, Marco A -- Jones, Steven J M -- Astell, Caroline R -- Holt, Robert A -- Brooks-Wilson, Angela -- Butterfield, Yaron S N -- Khattra, Jaswinder -- Asano, Jennifer K -- Barber, Sarah A -- Chan, Susanna Y -- Cloutier, Alison -- Coughlin, Shaun M -- Freeman, Doug -- Girn, Noreen -- Griffith, Obi L -- Leach, Stephen R -- Mayo, Michael -- McDonald, Helen -- Montgomery, Stephen B -- Pandoh, Pawan K -- Petrescu, Anca S -- Robertson, A Gordon -- Schein, Jacqueline E -- Siddiqui, Asim -- Smailus, Duane E -- Stott, Jeff M -- Yang, George S -- Plummer, Francis -- Andonov, Anton -- Artsob, Harvey -- Bastien, Nathalie -- Bernard, Kathy -- Booth, Timothy F -- Bowness, Donnie -- Czub, Martin -- Drebot, Michael -- Fernando, Lisa -- Flick, Ramon -- Garbutt, Michael -- Gray, Michael -- Grolla, Allen -- Jones, Steven -- Feldmann, Heinz -- Meyers, Adrienne -- Kabani, Amin -- Li, Yan -- Normand, Susan -- Stroher, Ute -- Tipples, Graham A -- Tyler, Shaun -- Vogrig, Robert -- Ward, Diane -- Watson, Brynn -- Brunham, Robert C -- Krajden, Mel -- Petric, Martin -- Skowronski, Danuta M -- Upton, Chris -- Roper, Rachel L -- New York, N.Y. -- Science. 2003 May 30;300(5624):1399-404. Epub 2003 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉British Columbia Cancer Agency (BCCA) Genome Sciences Centre, 600 West 10th Avenue, Vancouver, British Columbia V5Z 4E6, Canada. mmarra@bccgsc.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730501" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; 5' Untranslated Regions ; Animals ; Base Sequence ; Conserved Sequence ; Coronavirus/classification/genetics ; DNA, Complementary ; Frameshifting, Ribosomal ; *Genome, Viral ; Humans ; Membrane Glycoproteins/chemistry/genetics ; Nucleocapsid Proteins/chemistry/genetics ; Open Reading Frames ; Phylogeny ; RNA Replicase/chemistry/genetics ; RNA, Viral/*genetics/isolation & purification ; Regulatory Sequences, Nucleic Acid ; SARS Virus/classification/*genetics/isolation & purification ; Sequence Analysis, DNA ; Severe Acute Respiratory Syndrome/virology ; Spike Glycoprotein, Coronavirus ; Viral Envelope Proteins/chemistry/genetics ; Viral Matrix Proteins/chemistry/genetics ; Viral Proteins/chemistry/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1992-08-21
    Description: Epidermolytic hyperkeratosis is a hereditary skin disorder characterized by blistering and a marked thickening of the stratum corneum. In one family, affected individuals exhibited a mutation in the highly conserved carboxyl terminal of the rod domain of keratin 1. In two other families, affected individuals had mutations in the highly conserved amino terminal of the rod domain of keratin 10. Structural analysis of these mutations predicts that heterodimer formation would be unaffected, although filament assembly and elongation would be severely compromised. These data imply that an intact keratin intermediate filament network is required for the maintenance of both cellular and tissue integrity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rothnagel, J A -- Dominey, A M -- Dempsey, L D -- Longley, M A -- Greenhalgh, D A -- Gagne, T A -- Huber, M -- Frenk, E -- Hohl, D -- Roop, D R -- HD25479/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1992 Aug 21;257(5073):1128-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1380725" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA/chemistry ; Humans ; Ichthyosiform Erythroderma, Congenital/*genetics ; Keratins/chemistry/*genetics ; Macromolecular Substances ; Molecular Sequence Data ; *Mutation ; Pedigree ; Polymerase Chain Reaction ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2002-10-05
    Description: The detection of single-nucleotide polymorphisms in pathogenic microorganisms has normally been carried out by trial and error. Here we show that DNA hybridization with high-density oligonucleotide arrays provides rapid and convenient detection of single-nucleotide polymorphisms in Plasmodium falciparum, despite its exceptionally high adenine-thymine (AT) content (82%). A disproportionate number of polymorphisms are found in genes encoding proteins associated with the cell membrane. These genes are targets for only 22% of the oligonucleotide probes but account for 69% of the polymorphisms. Genetic variation is also enriched in subtelomeric regions, which account for 22% of the chromosome but 76% of the polymorphisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Volkman, Sarah K -- Hartl, Daniel L -- Wirth, Dyann F -- Nielsen, Kaare M -- Choi, Mehee -- Batalov, Serge -- Zhou, Yingyao -- Plouffe, David -- Le Roch, Karine G -- Abagyan, Ruben -- Winzeler, Elizabeth A -- GM61351/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Oct 4;298(5591):216-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12364807" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromosomes/genetics ; DNA, Protozoan/genetics ; *Genes, Protozoan ; Genetic Variation ; Genome, Protozoan ; Membrane Proteins/*genetics ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Oligonucleotide Probes ; Plasmodium falciparum/*genetics ; *Polymorphism, Single Nucleotide ; Protozoan Proteins/*genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-05-11
    Description: Comparison of the whole-genome sequence of Bacillus anthracis isolated from a victim of a recent bioterrorist anthrax attack with a reference reveals 60 new markers that include single nucleotide polymorphisms (SNPs), inserted or deleted sequences, and tandem repeats. Genome comparison detected four high-quality SNPs between the two sequenced B. anthracis chromosomes and seven differences among different preparations of the reference genome. These markers have been tested on a collection of anthrax isolates and were found to divide these samples into distinct families. These results demonstrate that genome-based analysis of microbial pathogens will provide a powerful new tool for investigation of infectious disease outbreaks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Read, Timothy D -- Salzberg, Steven L -- Pop, Mihai -- Shumway, Martin -- Umayam, Lowell -- Jiang, Lingxia -- Holtzapple, Erik -- Busch, Joseph D -- Smith, Kimothy L -- Schupp, James M -- Solomon, Daniel -- Keim, Paul -- Fraser, Claire M -- R01-LM06845/LM/NLM NIH HHS/ -- New York, N.Y. -- Science. 2002 Jun 14;296(5575):2028-33. Epub 2002 May 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA., Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004073" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthrax/microbiology ; Bacillus anthracis/classification/*genetics/isolation & ; purification/pathogenicity ; Bacterial Typing Techniques ; Base Sequence ; Bioterrorism ; Chromosome Inversion ; Computational Biology ; Disease Outbreaks ; Genetic Markers ; *Genetic Variation ; *Genome, Bacterial ; Genomics ; Humans ; Minisatellite Repeats ; Molecular Sequence Data ; Mutation ; Phenotype ; Phylogeny ; Plasmids ; *Polymorphism, Single Nucleotide ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; *Sequence Analysis, DNA ; Sequence Deletion ; Species Specificity ; Transposases/genetics ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1993-08-27
    Description: Better characterization of human immunodeficiency virus-type 1 (HIV-1) in patients with primary infection has important implications for the development of an acquired immunodeficiency syndrome (AIDS) vaccine because vaccine strategies should target viral isolates with the properties of transmitted viruses. In five HIV-1 seroconverters, the viral phenotype was found to be uniformly macrophage-tropic and non-syncytium-inducing. Furthermore, the viruses were genotypically homogeneous within each patient, but a common signature sequence was not discernible among transmitted viruses. In the two cases where the sexual partners were also studied, the sequences of the transmitted viruses matched best with minor variants in the blood of the transmitters. There was also a stronger pressure to conserve sequences in gp120 than in gp41, nef, and p17, suggesting that a selective mechanism is involved in transmission.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, T -- Mo, H -- Wang, N -- Nam, D S -- Cao, Y -- Koup, R A -- Ho, D D -- AI24030/AI/NIAID NIH HHS/ -- AI25541/AI/NIAID NIH HHS/ -- AI27742/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1993 Aug 27;261(5125):1179-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aaron Diamond AIDS Research Center, New York University School of Medicine, NY 10016.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8356453" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Female ; Gene Products, gag/chemistry/genetics ; Genes, Viral ; Genotype ; Giant Cells/physiology ; HIV Antigens/chemistry/genetics ; HIV Envelope Protein gp120/chemistry/*genetics ; HIV Envelope Protein gp41/chemistry/genetics ; HIV Infections/*microbiology/transmission ; HIV Seropositivity/microbiology ; HIV-1/chemistry/*genetics/*physiology ; Humans ; Macrophages ; Male ; Molecular Sequence Data ; Phenotype ; Sequence Alignment ; Sexual Partners ; *Viral Proteins ; Virus Replication ; gag Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1994-09-02
    Description: As a step toward developing poliovirus as a vaccine vector, poliovirus recombinants were constructed by fusing exogenous peptides (up to 400 amino acids) and an artificial cleavage site for viral protease 3Cpro to the amino terminus of the viral polyprotein. Viral replication proceeded normally. An extended polyprotein was produced in infected cells and proteolytically processed into the complete array of viral proteins plus the foreign peptide, which was excluded from mature virions. The recombinants retained exogenous sequences through successive rounds of replication in culture and in vivo. Infection of animals with recombinants elicited a humoral immune response to the foreign peptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andino, R -- Silvera, D -- Suggett, S D -- Achacoso, P L -- Miller, C J -- Baltimore, D -- Feinberg, M B -- AI22346/AI/NIAID NIH HHS/ -- AI35545/AI/NIAID NIH HHS/ -- RR00169/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1994 Sep 2;265(5177):1448-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, San Francisco.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8073288" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Bacterial/biosynthesis ; Antibodies, Viral/biosynthesis ; Antigens, Bacterial/genetics/immunology ; Antigens, Viral/genetics/immunology ; Base Sequence ; Cloning, Molecular ; *Genetic Engineering ; Genetic Vectors ; HeLa Cells ; Humans ; Macaca fascicularis ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Poliovirus/*genetics/immunology/physiology ; Poliovirus Vaccine, Oral/*genetics ; *Protein Biosynthesis ; Proteins/metabolism ; Recombinant Proteins/biosynthesis/metabolism ; Vaccines, Synthetic/genetics/*immunology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1993-12-24
    Description: A human Wilms tumor cell line (RM1) was developed to test the tumor suppressor activity of WT1, a zinc finger transcription factor that is expressed in the developing human kidney and is mutationally inactivated in a subset of Wilms tumors. Transfection of each of four wild-type WT1 isoforms suppressed the growth of RM1 cells. The endogenous WT1 transcript in these cells was devoid of exon 2 sequences, a splicing alteration that was also detected in varying amounts in all Wilms tumors tested but not in normal kidney. Production of this abnormal transcript, which encodes a functionally altered protein, may represent a distinct mechanism for inactivating WT1 in Wilms tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haber, D A -- Park, S -- Maheswaran, S -- Englert, C -- Re, G G -- Hazen-Martin, D J -- Sens, D A -- Garvin, A J -- CA37887/CA/NCI NIH HHS/ -- CA58596/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Dec 24;262(5142):2057-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Genetics, Massachusetts General Hospital Cancer Center, Boston 02129.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8266105" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Division/genetics ; DNA-Binding Proteins/biosynthesis/*genetics/physiology ; Genes, Wilms Tumor/genetics/*physiology ; Humans ; Mice ; Mice, Nude ; Molecular Sequence Data ; Neoplasm Transplantation ; RNA, Messenger/genetics ; Tumor Cells, Cultured ; WT1 Proteins ; Wilms Tumor/*genetics/*pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...