ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (59)
  • Lunar and Planetary Science and Exploration  (57)
  • Aerospace Medicine
  • Molecular Sequence Data
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-18
    Description: During T cell activation, the engagement of costimulatory molecules is often crucial to the development of an effective immune response, but the mechanism by which this is achieved is not known. Here, it is shown that beads attached to the surface of a T cell translocate toward the interface shortly after the start of T cell activation. This movement appears to depend on myosin motor proteins and requires the engagement of the major costimulatory receptor pairs, B7-CD28 and ICAM-1-LFA-1. This suggests that the engagement of costimulatory receptors triggers an active accumulation of molecules at the interface of the T cell and the antigen-presenting cell, which then increases the overall amplitude and duration of T cell signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wulfing, C -- Davis, M M -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2266-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856952" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; Antigen-Presenting Cells/immunology ; Antigens, CD/*metabolism ; Antigens, CD28/metabolism ; Antigens, CD86 ; Biotinylation ; CHO Cells ; Calcium/metabolism ; Cricetinae ; Cytoskeleton/*physiology ; Intercellular Adhesion Molecule-1/metabolism ; *Lymphocyte Activation ; Lymphocyte Function-Associated Antigen-1/metabolism ; Membrane Glycoproteins/metabolism ; Mice ; Microspheres ; Molecular Motor Proteins/physiology ; Myosins/physiology ; Phosphatidylinositol 3-Kinases/metabolism ; Receptors, Antigen, T-Cell/immunology ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism/ultrastructure ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-10-23
    Description: Analysis of the 1,042,519-base pair Chlamydia trachomatis genome revealed unexpected features related to the complex biology of chlamydiae. Although chlamydiae lack many biosynthetic capabilities, they retain functions for performing key steps and interconversions of metabolites obtained from their mammalian host cells. Numerous potential virulence-associated proteins also were characterized. Several eukaryotic chromatin-associated domain proteins were identified, suggesting a eukaryotic-like mechanism for chlamydial nucleoid condensation and decondensation. The phylogenetic mosaic of chlamydial genes, including a large number of genes with phylogenetic origins from eukaryotes, implies a complex evolution for adaptation to obligate intracellular parasitism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, R S -- Kalman, S -- Lammel, C -- Fan, J -- Marathe, R -- Aravind, L -- Mitchell, W -- Olinger, L -- Tatusov, R L -- Zhao, Q -- Koonin, E V -- Davis, R W -- AI 39258/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Oct 23;282(5389):754-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Infectious Diseases, University of California, Berkeley, CA 94720, USA. ctgenome@socrates.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9784136" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Amino Acid Sequence ; Amino Acids/biosynthesis ; Bacterial Outer Membrane Proteins/genetics ; Bacterial Proteins/chemistry/genetics ; Biological Evolution ; Chlamydia trachomatis/classification/*genetics/metabolism/physiology ; DNA Repair ; Energy Metabolism ; Enzymes/chemistry/genetics ; *Genome, Bacterial ; Humans ; Lipids/biosynthesis ; Molecular Sequence Data ; Peptidoglycan/biosynthesis/genetics ; Phylogeny ; Protein Biosynthesis ; Recombination, Genetic ; *Sequence Analysis, DNA ; Transcription, Genetic ; Transformation, Bacterial ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-05-29
    Description: Endoglin is a transforming growth factor-beta (TGF-beta) binding protein expressed on the surface of endothelial cells. Loss-of-function mutations in the human endoglin gene ENG cause hereditary hemorrhagic telangiectasia (HHT1), a disease characterized by vascular malformations. Here it is shown that by gestational day 11.5, mice lacking endoglin die from defective vascular development. However, in contrast to mice lacking TGF-beta, vasculogenesis was unaffected. Loss of endoglin caused poor vascular smooth muscle development and arrested endothelial remodeling. These results demonstrate that endoglin is essential for angiogenesis and suggest a pathogenic mechanism for HHT1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, D Y -- Sorensen, L K -- Brooke, B S -- Urness, L D -- Davis, E C -- Taylor, D G -- Boak, B B -- Wendel, D P -- K08 HL03490-03/HL/NHLBI NIH HHS/ -- T35 HL07744-06/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 May 28;284(5419):1534-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Human Molecular Biology and Genetics, Department of Human Genetics, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-5330, USA. dean.li@hci.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10348742" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD ; Antigens, CD31/analysis ; Blood Vessels/cytology/*embryology/metabolism ; Cell Differentiation ; Crosses, Genetic ; Endothelium, Vascular/cytology/*embryology/metabolism ; Female ; Gene Targeting ; In Situ Hybridization ; Male ; Mice ; Mice, Inbred C57BL ; Microscopy, Electron ; Muscle, Smooth, Vascular/cytology/*embryology ; *Neovascularization, Physiologic ; Receptors, Cell Surface ; Signal Transduction ; Transforming Growth Factor beta/metabolism ; Vascular Cell Adhesion Molecule-1/genetics/*physiology ; Yolk Sac/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-01-05
    Description: Phytochromes are a family of photoreceptors used by green plants to entrain their development to the light environment. The distribution of these chromoproteins has been expanded beyond photoautotrophs with the discovery of phytochrome-like proteins in the nonphotosynthetic eubacteria Deinococcus radiodurans and Pseudomonas aeruginosa. Like plant phytochromes, the D. radiodurans receptor covalently binds linear tetrapyrroles autocatalytically to generate a photochromic holoprotein. However, the attachment site is distinct, using a histidine to potentially form a Schiff base linkage. Sequence homology and mutational analysis suggest that D. radiodurans bacteriophytochrome functions as a light-regulated histidine kinase, which helps protect the bacterium from visible light.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S J -- Vener, A V -- Vierstra, R D -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2517-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, Cellular and Molecular Biology Program and Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617469" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Bacterial Proteins/chemistry/genetics/*metabolism ; Biliverdine/analogs & derivatives/metabolism ; Binding Sites ; Gram-Positive Cocci/genetics/*metabolism ; Histidine/metabolism ; Light ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Photoreceptors, Microbial/chemistry/genetics/*metabolism ; Phytochrome/metabolism ; Protein Kinases/chemistry/genetics/*metabolism ; Pseudomonas aeruginosa/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-06-12
    Description: In many organisms, master control genes coordinately regulate sex-specific aspects of development. SDC-2 was shown to induce hermaphrodite sexual differentiation and activate X chromosome dosage compensation in Caenorhabditis elegans. To control these distinct processes, SDC-2 acts as a strong gene-specific repressor and a weaker chromosome-wide repressor. To initiate hermaphrodite development, SDC-2 associates with the promoter of the male sex-determining gene her-1 to repress its transcription. To activate dosage compensation, SDC-2 triggers assembly of a specialized protein complex exclusively on hermaphrodite X chromosomes to reduce gene expression by half. SDC-2 can localize to X chromosomes without other components of the dosage compensation complex, suggesting that SDC-2 targets dosage compensation machinery to X chromosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawes, H E -- Berlin, D S -- Lapidus, D M -- Nusbaum, C -- Davis, T L -- Meyer, B J -- GM30702/GM/NIGMS NIH HHS/ -- T32 GM07127/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1800-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364546" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/embryology/*genetics/physiology ; *Caenorhabditis elegans Proteins ; *DNA-Binding Proteins ; Disorders of Sex Development ; *Dosage Compensation, Genetic ; Female ; Gene Expression Regulation, Developmental ; Genes, Helminth ; Helminth Proteins/genetics/*physiology ; Male ; Molecular Sequence Data ; Mutation ; Promoter Regions, Genetic ; Repressor Proteins/genetics/*physiology ; *Sex Determination Processes ; Transgenes ; X Chromosome/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-05-08
    Description: The c-Jun NH2-terminal kinase (JNK) is activated when cells are exposed to ultraviolet (UV) radiation. However, the functional consequence of JNK activation in UV-irradiated cells has not been established. It is shown here that JNK is required for UV-induced apoptosis in primary murine embryonic fibroblasts. Fibroblasts with simultaneous targeted disruptions of all the functional Jnk genes were protected against UV-stimulated apoptosis. The absence of JNK caused a defect in the mitochondrial death signaling pathway, including the failure to release cytochrome c. These data indicate that mitochondria are influenced by proapoptotic signal transduction through the JNK pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tournier, C -- Hess, P -- Yang, D D -- Xu, J -- Turner, T K -- Nimnual, A -- Bar-Sagi, D -- Jones, S N -- Flavell, R A -- Davis, R J -- New York, N.Y. -- Science. 2000 May 5;288(5467):870-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular Medicine, Department of Biochemistry & Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10797012" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptotic Protease-Activating Factor 1 ; Caspase 3 ; Caspase 9 ; Caspases/metabolism ; Cell Count ; Cell Division ; Cells, Cultured ; Cytochrome c Group/*metabolism ; DNA Fragmentation ; Enzyme Activation ; Fibroblasts ; Gene Targeting ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Signaling System ; Methyl Methanesulfonate/pharmacology ; Mice ; Mitochondria/metabolism ; Mitogen-Activated Protein Kinases/genetics/*metabolism ; NF-kappa B/metabolism ; *Protein-Serine-Threonine Kinases ; Proteins/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Tumor Suppressor Protein p53/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2001-01-06
    Description: Most traditional cytotoxic anticancer agents ablate the rapidly dividing epithelium of the hair follicle and induce alopecia (hair loss). Inhibition of cyclin-dependent kinase 2 (CDK2), a positive regulator of eukaryotic cell cycle progression, may represent a therapeutic strategy for prevention of chemotherapy-induced alopecia (CIA) by arresting the cell cycle and reducing the sensitivity of the epithelium to many cell cycle-active antitumor agents. Potent small-molecule inhibitors of CDK2 were developed using structure-based methods. Topical application of these compounds in a neonatal rat model of CIA reduced hair loss at the site of application in 33 to 50% of the animals. Thus, inhibition of CDK2 represents a potentially useful approach for the prevention of CIA in cancer patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S T -- Benson, B G -- Bramson, H N -- Chapman, D E -- Dickerson, S H -- Dold, K M -- Eberwein, D J -- Edelstein, M -- Frye, S V -- Gampe Jr, R T -- Griffin, R J -- Harris, P A -- Hassell, A M -- Holmes, W D -- Hunter, R N -- Knick, V B -- Lackey, K -- Lovejoy, B -- Luzzio, M J -- Murray, D -- Parker, P -- Rocque, W J -- Shewchuk, L -- Veal, J M -- Walker, D H -- Kuyper, L F -- New York, N.Y. -- Science. 2001 Jan 5;291(5501):134-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Glaxo Wellcome Research and Development, Research Triangle Park, NC 27709, USA. std41085@glaxowellcome.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11141566" target="_blank"〉PubMed〈/a〉
    Keywords: Alopecia/*chemically induced/*prevention & control ; Animals ; Animals, Newborn ; Antineoplastic Agents/*toxicity ; Antineoplastic Combined Chemotherapy Protocols/toxicity ; Apoptosis/drug effects ; *CDC2-CDC28 Kinases ; Cell Cycle/drug effects ; Cell Line ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/*antagonists & inhibitors/metabolism ; Cyclophosphamide/toxicity ; Cytoprotection/drug effects ; DNA/biosynthesis ; Doxorubicin/toxicity ; Drug Design ; Enzyme Inhibitors/chemical synthesis/chemistry/*pharmacology ; Epithelium/drug effects ; Etoposide/toxicity ; Hair Follicle/cytology/*drug effects ; Humans ; Indoles/chemical synthesis/chemistry/*pharmacology ; Mice ; Mice, SCID ; Phosphorylation ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Rats ; Retinoblastoma Protein/metabolism ; Scalp/transplantation ; Sulfonamides/chemical synthesis/chemistry/*pharmacology ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-06-11
    Description: The mouse Clock gene encodes a bHLH-PAS protein that regulates circadian rhythms and is related to transcription factors that act as heterodimers. Potential partners of CLOCK were isolated in a two-hybrid screen, and one, BMAL1, was coexpressed with CLOCK and PER1 at known circadian clock sites in brain and retina. CLOCK-BMAL1 heterodimers activated transcription from E-box elements, a type of transcription factor-binding site, found adjacent to the mouse per1 gene and from an identical E-box known to be important for per gene expression in Drosophila. Mutant CLOCK from the dominant-negative Clock allele and BMAL1 formed heterodimers that bound DNA but failed to activate transcription. Thus, CLOCK-BMAL1 heterodimers appear to drive the positive component of per transcriptional oscillations, which are thought to underlie circadian rhythmicity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gekakis, N -- Staknis, D -- Nguyen, H B -- Davis, F C -- Wilsbacher, L D -- King, D P -- Takahashi, J S -- Weitz, C J -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1564-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston MA 02115, USA. 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616112" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Biological Clocks ; CLOCK Proteins ; Cell Cycle Proteins ; Circadian Rhythm/genetics/*physiology ; Cloning, Molecular ; Cricetinae ; DNA/metabolism ; Dimerization ; Feedback ; Gene Expression ; Helix-Loop-Helix Motifs ; Male ; Mesocricetus ; Mice ; Mutation ; Nuclear Proteins/*genetics/metabolism ; Period Circadian Proteins ; Promoter Regions, Genetic ; Retina/metabolism ; Suprachiasmatic Nucleus/metabolism ; Trans-Activators/genetics/*metabolism ; Transcription Factors/genetics/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2000-06-24
    Description: T helper 1 (TH1) cells mediate cellular immunity, whereas TH2 cells potentiate antiparasite and humoral immunity. We used a complementary DNA subtraction method, representational display analysis, to show that the small guanosine triphosphatase Rac2 is expressed selectively in murine TH1 cells. Rac induces the interferon-gamma (IFN-gamma) promoter through cooperative activation of the nuclear factor kappa B and p38 mitogen-activated protein kinase pathways. Tetracycline-regulated transgenic mice expressing constitutively active Rac2 in T cells exhibited enhanced IFN-gamma production. Dominant-negative Rac inhibited IFN-gamma production in murine T cells. Moreover, T cells from Rac2-/- mice showed decreased IFN-gamma production under TH1 conditions in vitro. Thus, Rac2 activates TH1-specific signaling and IFN-gamma gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, B -- Yu, H -- Zheng, W -- Voll, R -- Na, S -- Roberts, A W -- Williams, D A -- Davis, R J -- Ghosh, S -- Flavell, R A -- New York, N.Y. -- Science. 2000 Jun 23;288(5474):2219-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520-8011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10864872" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cells, Cultured ; Cytokines/biosynthesis/genetics ; Gene Expression Regulation ; Humans ; Interferon-gamma/biosynthesis/*genetics ; JNK Mitogen-Activated Protein Kinases ; Jurkat Cells ; Lymphocyte Activation ; Mice ; Mice, Transgenic ; Mitogen-Activated Protein Kinases/metabolism ; NF-kappa B/metabolism ; Promoter Regions, Genetic ; Signal Transduction ; Th1 Cells/cytology/*immunology/*metabolism ; Transfection ; p38 Mitogen-Activated Protein Kinases ; rac GTP-Binding Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2001-12-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hotchkiss, R S -- Dunne, W M -- Swanson, P E -- Davis, C G -- Tinsley, K W -- Chang, K C -- Buchman, T G -- Karl, I E -- GM44118/GM/NIGMS NIH HHS/ -- GM55194/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1783.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA. hotch@morpheus.wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729269" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/genetics/metabolism ; *Apoptosis ; Bronchi/enzymology/metabolism/pathology/ultrastructure ; Caspase 3 ; Caspases/metabolism ; Chromatin/metabolism/pathology/ultrastructure ; DNA, Single-Stranded/analysis ; Endothelium, Vascular/enzymology/metabolism/pathology ; Epithelial Cells/enzymology/metabolism/pathology/ultrastructure ; False Positive Reactions ; Gene Deletion ; In Situ Nick-End Labeling ; Lymphocytes/enzymology/metabolism/pathology ; Mice ; Microscopy, Electron ; Pneumonia, Bacterial/enzymology/metabolism/*pathology ; Pseudomonas Infections/enzymology/metabolism/*pathology ; Pseudomonas aeruginosa/*physiology ; Reproducibility of Results ; Sepsis/enzymology/metabolism/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...