ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Male  (31)
  • Models, Molecular  (19)
  • Astrophysics
  • Nature Publishing Group (NPG)  (50)
  • 2005-2009  (50)
Collection
Years
Year
  • 1
    Publication Date: 2008-11-07
    Description: DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost. Single molecules of DNA are attached to a flat surface, amplified in situ and used as templates for synthetic sequencing with fluorescent reversible terminator deoxyribonucleotides. Images of the surface are analysed to generate high-quality sequence. We demonstrate application of this approach to human genome sequencing on flow-sorted X chromosomes and then scale the approach to determine the genome sequence of a male Yoruba from Ibadan, Nigeria. We build an accurate consensus sequence from 〉30x average depth of paired 35-base reads. We characterize four million single-nucleotide polymorphisms and four hundred thousand structural variants, many of which were previously unknown. Our approach is effective for accurate, rapid and economical whole-genome re-sequencing and many other biomedical applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581791/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581791/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bentley, David R -- Balasubramanian, Shankar -- Swerdlow, Harold P -- Smith, Geoffrey P -- Milton, John -- Brown, Clive G -- Hall, Kevin P -- Evers, Dirk J -- Barnes, Colin L -- Bignell, Helen R -- Boutell, Jonathan M -- Bryant, Jason -- Carter, Richard J -- Keira Cheetham, R -- Cox, Anthony J -- Ellis, Darren J -- Flatbush, Michael R -- Gormley, Niall A -- Humphray, Sean J -- Irving, Leslie J -- Karbelashvili, Mirian S -- Kirk, Scott M -- Li, Heng -- Liu, Xiaohai -- Maisinger, Klaus S -- Murray, Lisa J -- Obradovic, Bojan -- Ost, Tobias -- Parkinson, Michael L -- Pratt, Mark R -- Rasolonjatovo, Isabelle M J -- Reed, Mark T -- Rigatti, Roberto -- Rodighiero, Chiara -- Ross, Mark T -- Sabot, Andrea -- Sankar, Subramanian V -- Scally, Aylwyn -- Schroth, Gary P -- Smith, Mark E -- Smith, Vincent P -- Spiridou, Anastassia -- Torrance, Peta E -- Tzonev, Svilen S -- Vermaas, Eric H -- Walter, Klaudia -- Wu, Xiaolin -- Zhang, Lu -- Alam, Mohammed D -- Anastasi, Carole -- Aniebo, Ify C -- Bailey, David M D -- Bancarz, Iain R -- Banerjee, Saibal -- Barbour, Selena G -- Baybayan, Primo A -- Benoit, Vincent A -- Benson, Kevin F -- Bevis, Claire -- Black, Phillip J -- Boodhun, Asha -- Brennan, Joe S -- Bridgham, John A -- Brown, Rob C -- Brown, Andrew A -- Buermann, Dale H -- Bundu, Abass A -- Burrows, James C -- Carter, Nigel P -- Castillo, Nestor -- Chiara E Catenazzi, Maria -- Chang, Simon -- Neil Cooley, R -- Crake, Natasha R -- Dada, Olubunmi O -- Diakoumakos, Konstantinos D -- Dominguez-Fernandez, Belen -- Earnshaw, David J -- Egbujor, Ugonna C -- Elmore, David W -- Etchin, Sergey S -- Ewan, Mark R -- Fedurco, Milan -- Fraser, Louise J -- Fuentes Fajardo, Karin V -- Scott Furey, W -- George, David -- Gietzen, Kimberley J -- Goddard, Colin P -- Golda, George S -- Granieri, Philip A -- Green, David E -- Gustafson, David L -- Hansen, Nancy F -- Harnish, Kevin -- Haudenschild, Christian D -- Heyer, Narinder I -- Hims, Matthew M -- Ho, Johnny T -- Horgan, Adrian M -- Hoschler, Katya -- Hurwitz, Steve -- Ivanov, Denis V -- Johnson, Maria Q -- James, Terena -- Huw Jones, T A -- Kang, Gyoung-Dong -- Kerelska, Tzvetana H -- Kersey, Alan D -- Khrebtukova, Irina -- Kindwall, Alex P -- Kingsbury, Zoya -- Kokko-Gonzales, Paula I -- Kumar, Anil -- Laurent, Marc A -- Lawley, Cynthia T -- Lee, Sarah E -- Lee, Xavier -- Liao, Arnold K -- Loch, Jennifer A -- Lok, Mitch -- Luo, Shujun -- Mammen, Radhika M -- Martin, John W -- McCauley, Patrick G -- McNitt, Paul -- Mehta, Parul -- Moon, Keith W -- Mullens, Joe W -- Newington, Taksina -- Ning, Zemin -- Ling Ng, Bee -- Novo, Sonia M -- O'Neill, Michael J -- Osborne, Mark A -- Osnowski, Andrew -- Ostadan, Omead -- Paraschos, Lambros L -- Pickering, Lea -- Pike, Andrew C -- Pike, Alger C -- Chris Pinkard, D -- Pliskin, Daniel P -- Podhasky, Joe -- Quijano, Victor J -- Raczy, Come -- Rae, Vicki H -- Rawlings, Stephen R -- Chiva Rodriguez, Ana -- Roe, Phyllida M -- Rogers, John -- Rogert Bacigalupo, Maria C -- Romanov, Nikolai -- Romieu, Anthony -- Roth, Rithy K -- Rourke, Natalie J -- Ruediger, Silke T -- Rusman, Eli -- Sanches-Kuiper, Raquel M -- Schenker, Martin R -- Seoane, Josefina M -- Shaw, Richard J -- Shiver, Mitch K -- Short, Steven W -- Sizto, Ning L -- Sluis, Johannes P -- Smith, Melanie A -- Ernest Sohna Sohna, Jean -- Spence, Eric J -- Stevens, Kim -- Sutton, Neil -- Szajkowski, Lukasz -- Tregidgo, Carolyn L -- Turcatti, Gerardo -- Vandevondele, Stephanie -- Verhovsky, Yuli -- Virk, Selene M -- Wakelin, Suzanne -- Walcott, Gregory C -- Wang, Jingwen -- Worsley, Graham J -- Yan, Juying -- Yau, Ling -- Zuerlein, Mike -- Rogers, Jane -- Mullikin, James C -- Hurles, Matthew E -- McCooke, Nick J -- West, John S -- Oaks, Frank L -- Lundberg, Peter L -- Klenerman, David -- Durbin, Richard -- Smith, Anthony J -- B05823/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0701805/Medical Research Council/United Kingdom -- MOL04534/Biotechnology and Biological Sciences Research Council/United Kingdom -- Z01 HG200330-03/Intramural NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2008 Nov 6;456(7218):53-9. doi: 10.1038/nature07517.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Illumina Cambridge Ltd. (Formerly Solexa Ltd), Chesterford Research Park, Little Chesterford, Nr Saffron Walden, Essex CB10 1XL, UK. dbentley@illumina.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18987734" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Human, X/genetics ; Consensus Sequence/genetics ; Genome, Human/*genetics ; Genomics/economics/*methods ; Genotype ; Humans ; Male ; Nigeria ; Polymorphism, Single Nucleotide/genetics ; Sensitivity and Specificity ; Sequence Analysis, DNA/economics/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-08-16
    Description: Non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) found in bacteria, fungi and plants use two different types of thioesterases for the production of highly active biological compounds. Type I thioesterases (TEI) catalyse the release step from the assembly line of the final product where it is transported from one reaction centre to the next as a thioester linked to a 4'-phosphopantetheine (4'-PP) cofactor that is covalently attached to thiolation (T) domains. The second enzyme involved in the synthesis of these secondary metabolites, the type II thioesterase (TEII), is a crucial repair enzyme for the regeneration of functional 4'-PP cofactors of holo-T domains of NRPS and PKS systems. Mispriming of 4'-PP cofactors by acetyl- and short-chain acyl-residues interrupts the biosynthetic system. This repair reaction is very important, because roughly 80% of CoA, the precursor of the 4'-PP cofactor, is acetylated in bacteria. Here we report the three-dimensional structure of a type II thioesterase from Bacillus subtilis free and in complex with a T domain. Comparison with structures of TEI enzymes shows the basis for substrate selectivity and the different modes of interaction of TEII and TEI enzymes with T domains. Furthermore, we show that the TEII enzyme exists in several conformations of which only one is selected on interaction with its native substrate, a modified holo-T domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854587/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854587/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koglin, Alexander -- Lohr, Frank -- Bernhard, Frank -- Rogov, Vladimir V -- Frueh, Dominique P -- Strieter, Eric R -- Mofid, Mohammad R -- Guntert, Peter -- Wagner, Gerhard -- Walsh, Christopher T -- Marahiel, Mohamed A -- Dotsch, Volker -- P01 GM047467/GM/NIGMS NIH HHS/ -- P01 GM047467-110009/GM/NIGMS NIH HHS/ -- P01 GM047467-12/GM/NIGMS NIH HHS/ -- P01 GM047467-13/GM/NIGMS NIH HHS/ -- P01 GM047467-14/GM/NIGMS NIH HHS/ -- P01 GM047467-15/GM/NIGMS NIH HHS/ -- P01 GM047467-16/GM/NIGMS NIH HHS/ -- P01 GM047467-160010/GM/NIGMS NIH HHS/ -- P01 GM047467-160012/GM/NIGMS NIH HHS/ -- P01 GM047467-17/GM/NIGMS NIH HHS/ -- P01 GM047467-170012/GM/NIGMS NIH HHS/ -- P41 EB002026/EB/NIBIB NIH HHS/ -- P41 EB002026-29/EB/NIBIB NIH HHS/ -- P41 EB002026-30/EB/NIBIB NIH HHS/ -- P41 EB002026-31/EB/NIBIB NIH HHS/ -- P41 EB002026-32/EB/NIBIB NIH HHS/ -- P41 EB002026-33/EB/NIBIB NIH HHS/ -- R01 AI042738/AI/NIAID NIH HHS/ -- R01 AI042738-09/AI/NIAID NIH HHS/ -- R01 GM020011/GM/NIGMS NIH HHS/ -- R01 GM020011-28/GM/NIGMS NIH HHS/ -- R01 GM020011-29/GM/NIGMS NIH HHS/ -- R01 GM020011-30/GM/NIGMS NIH HHS/ -- R01 GM020011-31/GM/NIGMS NIH HHS/ -- R01 GM020011-32/GM/NIGMS NIH HHS/ -- R01 GM020011-37/GM/NIGMS NIH HHS/ -- R01 GM020011-38/GM/NIGMS NIH HHS/ -- R01 GM049338/GM/NIGMS NIH HHS/ -- R01 GM049338-17/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Aug 14;454(7206):907-11. doi: 10.1038/nature07161.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), J.W.-Goethe University, 60438 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18704089" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/*enzymology ; Bacterial Proteins/biosynthesis/*chemistry/*metabolism ; Fatty Acid Synthases/*chemistry/*metabolism ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Peptide Synthases/biosynthesis/*chemistry/*metabolism ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; Thiolester Hydrolases/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-02-01
    Description: The M2 protein from influenza A virus is a pH-activated proton channel that mediates acidification of the interior of viral particles entrapped in endosomes. M2 is the target of the anti-influenza drugs amantadine and rimantadine; recently, resistance to these drugs in humans, birds and pigs has reached more than 90% (ref. 1). Here we describe the crystal structure of the transmembrane-spanning region of the homotetrameric protein in the presence and absence of the channel-blocking drug amantadine. pH-dependent structural changes occur near a set of conserved His and Trp residues that are involved in proton gating. The drug-binding site is lined by residues that are mutated in amantadine-resistant viruses. Binding of amantadine physically occludes the pore, and might also perturb the pK(a) of the critical His residue. The structure provides a starting point for solving the problem of resistance to M2-channel blockers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889492/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889492/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stouffer, Amanda L -- Acharya, Rudresh -- Salom, David -- Levine, Anna S -- Di Costanzo, Luigi -- Soto, Cinque S -- Tereshko, Valentina -- Nanda, Vikas -- Stayrook, Steven -- DeGrado, William F -- R37 GM054616/GM/NIGMS NIH HHS/ -- T32 GM008275/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jan 31;451(7178):596-9. doi: 10.1038/nature06528.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18235504" target="_blank"〉PubMed〈/a〉
    Keywords: Amantadine/chemistry/metabolism/pharmacology ; Crystallography, X-Ray ; Drug Resistance, Viral/genetics ; Histidine/metabolism ; Hydrogen-Ion Concentration ; Influenza A virus/*chemistry/genetics/metabolism ; Ion Channel Gating/drug effects ; Models, Molecular ; Protein Structure, Quaternary ; Protons ; Structure-Activity Relationship ; Tryptophan/metabolism ; Viral Matrix Proteins/*antagonists & inhibitors/*chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-03-18
    Description: Common human diseases result from the interplay of many genes and environmental factors. Therefore, a more integrative biology approach is needed to unravel the complexity and causes of such diseases. To elucidate the complexity of common human diseases such as obesity, we have analysed the expression of 23,720 transcripts in large population-based blood and adipose tissue cohorts comprehensively assessed for various phenotypes, including traits related to clinical obesity. In contrast to the blood expression profiles, we observed a marked correlation between gene expression in adipose tissue and obesity-related traits. Genome-wide linkage and association mapping revealed a highly significant genetic component to gene expression traits, including a strong genetic effect of proximal (cis) signals, with 50% of the cis signals overlapping between the two tissues profiled. Here we demonstrate an extensive transcriptional network constructed from the human adipose data that exhibits significant overlap with similar network modules constructed from mouse adipose data. A core network module in humans and mice was identified that is enriched for genes involved in the inflammatory and immune response and has been found to be causally associated to obesity-related traits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Emilsson, Valur -- Thorleifsson, Gudmar -- Zhang, Bin -- Leonardson, Amy S -- Zink, Florian -- Zhu, Jun -- Carlson, Sonia -- Helgason, Agnar -- Walters, G Bragi -- Gunnarsdottir, Steinunn -- Mouy, Magali -- Steinthorsdottir, Valgerdur -- Eiriksdottir, Gudrun H -- Bjornsdottir, Gyda -- Reynisdottir, Inga -- Gudbjartsson, Daniel -- Helgadottir, Anna -- Jonasdottir, Aslaug -- Jonasdottir, Adalbjorg -- Styrkarsdottir, Unnur -- Gretarsdottir, Solveig -- Magnusson, Kristinn P -- Stefansson, Hreinn -- Fossdal, Ragnheidur -- Kristjansson, Kristleifur -- Gislason, Hjortur G -- Stefansson, Tryggvi -- Leifsson, Bjorn G -- Thorsteinsdottir, Unnur -- Lamb, John R -- Gulcher, Jeffrey R -- Reitman, Marc L -- Kong, Augustine -- Schadt, Eric E -- Stefansson, Kari -- England -- Nature. 2008 Mar 27;452(7186):423-8. doi: 10.1038/nature06758. Epub 2008 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉deCODE genetics, 101 Reykjavik, Iceland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18344981" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/metabolism ; Adolescent ; Adult ; Aged ; Aged, 80 and over ; Animals ; Blood/metabolism ; Body Mass Index ; Cohort Studies ; European Continental Ancestry Group/genetics ; Female ; *Gene Expression Profiling ; Gene Expression Regulation/*genetics ; Genome, Human ; Humans ; Iceland ; Lod Score ; Male ; Mice ; Middle Aged ; Obesity/*genetics ; Polymorphism, Single Nucleotide/genetics ; Quantitative Trait Loci/genetics ; Sample Size ; Waist-Hip Ratio
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-09-22
    Description: Polycomb group proteins have an essential role in the epigenetic maintenance of repressive chromatin states. The gene-silencing activity of the Polycomb repressive complex 2 (PRC2) depends on its ability to trimethylate lysine 27 of histone H3 (H3K27) by the catalytic SET domain of the EZH2 subunit, and at least two other subunits of the complex: SUZ12 and EED. Here we show that the carboxy-terminal domain of EED specifically binds to histone tails carrying trimethyl-lysine residues associated with repressive chromatin marks, and that this leads to the allosteric activation of the methyltransferase activity of PRC2. Mutations in EED that prevent it from recognizing repressive trimethyl-lysine marks abolish the activation of PRC2 in vitro and, in Drosophila, reduce global methylation and disrupt development. These findings suggest a model for the propagation of the H3K27me3 mark that accounts for the maintenance of repressive chromatin domains and for the transmission of a histone modification from mother to daughter cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772642/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772642/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Margueron, Raphael -- Justin, Neil -- Ohno, Katsuhito -- Sharpe, Miriam L -- Son, Jinsook -- Drury, William J 3rd -- Voigt, Philipp -- Martin, Stephen R -- Taylor, William R -- De Marco, Valeria -- Pirrotta, Vincenzo -- Reinberg, Danny -- Gamblin, Steven J -- GM064844/GM/NIGMS NIH HHS/ -- GM37120/GM/NIGMS NIH HHS/ -- MC_U117584222/Medical Research Council/United Kingdom -- R01 GM064844/GM/NIGMS NIH HHS/ -- R01 GM064844-08/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- Medical Research Council/United Kingdom -- England -- Nature. 2009 Oct 8;461(7265):762-7. doi: 10.1038/nature08398. Epub 2009 Sep 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, New York University Medical School, 522 First Avenue, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19767730" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Cell Line ; Chromatin/chemistry/*genetics/metabolism ; Crystallography, X-Ray ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/*genetics/growth & development/*metabolism ; Enzyme Activation ; *Gene Silencing ; Histone-Lysine N-Methyltransferase/chemistry/metabolism ; Histones/*chemistry/*metabolism ; Lysine/analogs & derivatives/metabolism ; Methylation ; Models, Biological ; Models, Molecular ; Nuclear Proteins/metabolism ; Nucleosomes/chemistry/genetics/metabolism ; Polycomb Repressive Complex 2 ; Protein Binding ; Protein Structure, Tertiary ; Repressor Proteins/chemistry/genetics/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-05-13
    Description: Sound communication plays a vital role in frog reproduction, in which vocal advertisement is generally the domain of males. Females are typically silent, but in a few anuran species they can produce a feeble reciprocal call or rapping sounds during courtship. Males of concave-eared torrent frogs (Odorrana tormota) have demonstrated ultrasonic communication capacity. Although females of O. tormota have an unusually well-developed vocal production system, it is unclear whether or not they produce calls or are only passive partners in a communication system dominated by males. Here we show that before ovulation, gravid females of O. tormota emit calls that are distinct from males' advertisement calls, having higher fundamental frequencies and harmonics and shorter call duration. In the field and in a quiet, darkened indoor arena, these female calls evoke vocalizations and extraordinarily precise positive phonotaxis (a localization error of 〈1 degrees ), rivalling that of vertebrates with the highest localization acuity (barn owls, dolphins, elephants and humans). The localization accuracy of O. tormota is remarkable in light of their small head size (interaural distance of 〈1 cm), and suggests an additional selective advantage of high-frequency hearing beyond the ability to avoid masking by low-frequency background noise.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Jun-Xian -- Feng, Albert S -- Xu, Zhi-Min -- Yu, Zu-Lin -- Arch, Victoria S -- Yu, Xin-Jian -- Narins, Peter M -- England -- Nature. 2008 Jun 12;453(7197):914-6. doi: 10.1038/nature06719. Epub 2008 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. shenjx@sun5.ibp.ac.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18469804" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; China ; *Courtship ; Female ; Humans ; Male ; Motor Activity/*physiology ; Ranidae/*physiology ; *Sex Characteristics ; Sound ; *Ultrasonics ; Vocalization, Animal/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-05-27
    Description: Understanding the energetics of molecular interactions is fundamental to all of the central quests of structural biology including structure prediction and design, mapping evolutionary pathways, learning how mutations cause disease, drug design, and relating structure to function. Hydrogen-bonding is widely regarded as an important force in a membrane environment because of the low dielectric constant of membranes and a lack of competition from water. Indeed, polar residue substitutions are the most common disease-causing mutations in membrane proteins. Because of limited structural information and technical challenges, however, there have been few quantitative tests of hydrogen-bond strength in the context of large membrane proteins. Here we show, by using a double-mutant cycle analysis, that the average contribution of eight interhelical side-chain hydrogen-bonding interactions throughout bacteriorhodopsin is only 0.6 kcal mol(-1). In agreement with these experiments, we find that 4% of polar atoms in the non-polar core regions of membrane proteins have no hydrogen-bond partner and the lengths of buried hydrogen bonds in soluble proteins and membrane protein transmembrane regions are statistically identical. Our results indicate that most hydrogen-bond interactions in membrane proteins are only modestly stabilizing. Weak hydrogen-bonding should be reflected in considerations of membrane protein folding, dynamics, design, evolution and function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2734483/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2734483/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joh, Nathan Hyunjoong -- Min, Andrew -- Faham, Salem -- Whitelegge, Julian P -- Yang, Duan -- Woods, Virgil L -- Bowie, James U -- R01 CA081000/CA/NCI NIH HHS/ -- R01 CA081000-07/CA/NCI NIH HHS/ -- R01 CA081000-08/CA/NCI NIH HHS/ -- R01 CA081000-09/CA/NCI NIH HHS/ -- R01 GM063919/GM/NIGMS NIH HHS/ -- R01 GM063919-06/GM/NIGMS NIH HHS/ -- R01 GM063919-07/GM/NIGMS NIH HHS/ -- R01 GM063919-08/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jun 26;453(7199):1266-70. doi: 10.1038/nature06977. Epub 2008 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, UCLA-DOE Center for Genomics and Proteomics, Molecular Biology Institute, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18500332" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriorhodopsins/chemistry/genetics/metabolism ; Crystallography, X-Ray ; Deuterium Exchange Measurement ; Hydrogen Bonding ; Membrane Proteins/*chemistry/genetics/*metabolism ; Models, Molecular ; Mutation/genetics ; Protein Folding ; Solubility ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-05-02
    Description: Half a century ago, the apical ectodermal ridge (AER) at the distal tip of the tetrapod limb bud was shown to produce signals necessary for development along the proximal-distal (P-D) axis, but how these signals influence limb patterning is still much debated. Fibroblast growth factor (FGF) gene family members are key AER-derived signals, with Fgf4, Fgf8, Fgf9 and Fgf17 expressed specifically in the mouse AER. Here we demonstrate that mouse limbs lacking Fgf4, Fgf9 and Fgf17 have normal skeletal pattern, indicating that Fgf8 is sufficient among AER-FGFs to sustain normal limb formation. Inactivation of Fgf8 alone causes a mild skeletal phenotype; however, when we also removed different combinations of the other AER-FGF genes, we obtained unexpected skeletal phenotypes of increasing severity, reflecting the contribution that each FGF can make to the total AER-FGF signal. Analysis of the compound mutant limb buds revealed that, in addition to sustaining cell survival, AER-FGFs regulate P-D-patterning gene expression during early limb bud development, providing genetic evidence that AER-FGFs function to specify a distal domain and challenging the long-standing hypothesis that AER-FGF signalling is permissive rather than instructive for limb patterning. We discuss how a two-signal model for P-D patterning can be integrated with the concept of early specification to explain the genetic data presented here.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631409/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631409/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mariani, Francesca V -- Ahn, Christina P -- Martin, Gail R -- F32 HD008696/HD/NICHD NIH HHS/ -- F32 HD008696-01/HD/NICHD NIH HHS/ -- F32 HD008696-02/HD/NICHD NIH HHS/ -- F32 HD008696-03/HD/NICHD NIH HHS/ -- R01 HD034380/HD/NICHD NIH HHS/ -- R01 HD034380-05/HD/NICHD NIH HHS/ -- R01 HD034380-06/HD/NICHD NIH HHS/ -- R01 HD034380-07/HD/NICHD NIH HHS/ -- R01 HD034380-08/HD/NICHD NIH HHS/ -- R01 HD034380-09/HD/NICHD NIH HHS/ -- R01 HD34380/HD/NICHD NIH HHS/ -- England -- Nature. 2008 May 15;453(7193):401-5. doi: 10.1038/nature06876. Epub 2008 Apr 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California at San Francisco, San Francisco, California 94158-2324, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18449196" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning/*genetics/*physiology ; Bone and Bones/embryology/metabolism ; Cell Survival ; Female ; Fibroblast Growth Factor 8/deficiency/genetics/*metabolism ; Fibroblast Growth Factors/deficiency/genetics/*metabolism ; Homeodomain Proteins/genetics ; Limb Buds/cytology/*embryology/metabolism ; Male ; Mice ; Neoplasm Proteins/genetics ; Organ Size ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-09-23
    Description: Type 1 diabetes (T1D) is a debilitating autoimmune disease that results from T-cell-mediated destruction of insulin-producing beta-cells. Its incidence has increased during the past several decades in developed countries, suggesting that changes in the environment (including the human microbial environment) may influence disease pathogenesis. The incidence of spontaneous T1D in non-obese diabetic (NOD) mice can be affected by the microbial environment in the animal housing facility or by exposure to microbial stimuli, such as injection with mycobacteria or various microbial products. Here we show that specific pathogen-free NOD mice lacking MyD88 protein (an adaptor for multiple innate immune receptors that recognize microbial stimuli) do not develop T1D. The effect is dependent on commensal microbes because germ-free MyD88-negative NOD mice develop robust diabetes, whereas colonization of these germ-free MyD88-negative NOD mice with a defined microbial consortium (representing bacterial phyla normally present in human gut) attenuates T1D. We also find that MyD88 deficiency changes the composition of the distal gut microbiota, and that exposure to the microbiota of specific pathogen-free MyD88-negative NOD donors attenuates T1D in germ-free NOD recipients. Together, these findings indicate that interaction of the intestinal microbes with the innate immune system is a critical epigenetic factor modifying T1D predisposition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wen, Li -- Ley, Ruth E -- Volchkov, Pavel Yu -- Stranges, Peter B -- Avanesyan, Lia -- Stonebraker, Austin C -- Hu, Changyun -- Wong, F Susan -- Szot, Gregory L -- Bluestone, Jeffrey A -- Gordon, Jeffrey I -- Chervonsky, Alexander V -- DK063452/DK/NIDDK NIH HHS/ -- DK30292/DK/NIDDK NIH HHS/ -- DK42086/DK/NIDDK NIH HHS/ -- DK45735/DK/NIDDK NIH HHS/ -- DK70977/DK/NIDDK NIH HHS/ -- P30 DK042086/DK/NIDDK NIH HHS/ -- P30 DK042086-16/DK/NIDDK NIH HHS/ -- P30 DK045735/DK/NIDDK NIH HHS/ -- P30 DK045735-10/DK/NIDDK NIH HHS/ -- P30 DK045735-119006/DK/NIDDK NIH HHS/ -- P30 DK056341/DK/NIDDK NIH HHS/ -- P30 DK056341-07/DK/NIDDK NIH HHS/ -- P30 DK056341-08/DK/NIDDK NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- P30 DK063720-01/DK/NIDDK NIH HHS/ -- P30 DK63720/DK/NIDDK NIH HHS/ -- R01 DK030292/DK/NIDDK NIH HHS/ -- R01 DK030292-24/DK/NIDDK NIH HHS/ -- R01 DK070977/DK/NIDDK NIH HHS/ -- R01 DK070977-04/DK/NIDDK NIH HHS/ -- R21 DK063452/DK/NIDDK NIH HHS/ -- R21 DK063452-02/DK/NIDDK NIH HHS/ -- R37 AI046643/AI/NIAID NIH HHS/ -- R37 AI046643-10/AI/NIAID NIH HHS/ -- R37 AI46643/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Oct 23;455(7216):1109-13. doi: 10.1038/nature07336. Epub 2008 Sep 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18806780" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/classification/genetics/*immunology/isolation & purification ; CD8-Positive T-Lymphocytes/immunology ; Diabetes Mellitus, Type 1/genetics/*immunology/*microbiology ; Female ; Immunity, Innate/genetics/*immunology ; Interferon-gamma/immunology ; Intestines/*microbiology ; Islets of Langerhans/pathology ; Male ; Mice ; Mice, Inbred NOD ; Mice, Knockout ; Mice, SCID ; Molecular Sequence Data ; Myeloid Differentiation Factor 88/genetics ; Phylogeny ; Specific Pathogen-Free Organisms ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-04-19
    Description: The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wheeler, David A -- Srinivasan, Maithreyan -- Egholm, Michael -- Shen, Yufeng -- Chen, Lei -- McGuire, Amy -- He, Wen -- Chen, Yi-Ju -- Makhijani, Vinod -- Roth, G Thomas -- Gomes, Xavier -- Tartaro, Karrie -- Niazi, Faheem -- Turcotte, Cynthia L -- Irzyk, Gerard P -- Lupski, James R -- Chinault, Craig -- Song, Xing-zhi -- Liu, Yue -- Yuan, Ye -- Nazareth, Lynne -- Qin, Xiang -- Muzny, Donna M -- Margulies, Marcel -- Weinstock, George M -- Gibbs, Richard A -- Rothberg, Jonathan M -- U54 HG003273/HG/NHGRI NIH HHS/ -- England -- Nature. 2008 Apr 17;452(7189):872-6. doi: 10.1038/nature06884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18421352" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Computational Biology ; Genetic Predisposition to Disease/genetics ; Genetic Variation/*genetics ; Genome, Human/*genetics ; Genomics/economics/*methods/trends ; Genotype ; Humans ; Individuality ; Male ; Oligonucleotide Array Sequence Analysis ; Polymorphism, Single Nucleotide/genetics ; Reproducibility of Results ; Sensitivity and Specificity ; Sequence Alignment ; Sequence Analysis, DNA/economics/*methods ; Software
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...