ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-04-25
    Description: Bacteriophage lambda has for many years been a model system for understanding mechanisms of gene regulation. A 'genetic switch' enables the phage to transition from lysogenic growth to lytic development when triggered by specific environmental conditions. The key component of the switch is the cI repressor, which binds to two sets of three operator sites on the lambda chromosome that are separated by about 2,400 base pairs (bp). A hallmark of the lambda system is the pairwise cooperativity of repressor binding. In the absence of detailed structural information, it has been difficult to understand fully how repressor molecules establish the cooperativity complex. Here we present the X-ray crystal structure of the intact lambda cI repressor dimer bound to a DNA operator site. The structure of the repressor, determined by multiple isomorphous replacement methods, reveals an unusual overall architecture that allows it to adopt a conformation that appears to facilitate pairwise cooperative binding to adjacent operator sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stayrook, Steven -- Jaru-Ampornpan, Peera -- Ni, Jenny -- Hochschild, Ann -- Lewis, Mitchell -- R01 GM044025/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Apr 24;452(7190):1022-5. doi: 10.1038/nature06831.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 37th and Hamilton Walk, Philadelphia, Pennsylvania 19102-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18432246" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Allosteric Site ; Bacteriophage lambda/*chemistry/genetics ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/*metabolism ; Dimerization ; Models, Biological ; *Models, Molecular ; Operator Regions, Genetic/*genetics ; Protein Conformation ; Repressor Proteins/*chemistry/*metabolism ; Structure-Activity Relationship ; Viral Regulatory and Accessory Proteins/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-02-01
    Description: The M2 protein from influenza A virus is a pH-activated proton channel that mediates acidification of the interior of viral particles entrapped in endosomes. M2 is the target of the anti-influenza drugs amantadine and rimantadine; recently, resistance to these drugs in humans, birds and pigs has reached more than 90% (ref. 1). Here we describe the crystal structure of the transmembrane-spanning region of the homotetrameric protein in the presence and absence of the channel-blocking drug amantadine. pH-dependent structural changes occur near a set of conserved His and Trp residues that are involved in proton gating. The drug-binding site is lined by residues that are mutated in amantadine-resistant viruses. Binding of amantadine physically occludes the pore, and might also perturb the pK(a) of the critical His residue. The structure provides a starting point for solving the problem of resistance to M2-channel blockers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889492/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889492/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stouffer, Amanda L -- Acharya, Rudresh -- Salom, David -- Levine, Anna S -- Di Costanzo, Luigi -- Soto, Cinque S -- Tereshko, Valentina -- Nanda, Vikas -- Stayrook, Steven -- DeGrado, William F -- R37 GM054616/GM/NIGMS NIH HHS/ -- T32 GM008275/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Jan 31;451(7178):596-9. doi: 10.1038/nature06528.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18235504" target="_blank"〉PubMed〈/a〉
    Keywords: Amantadine/chemistry/metabolism/pharmacology ; Crystallography, X-Ray ; Drug Resistance, Viral/genetics ; Histidine/metabolism ; Hydrogen-Ion Concentration ; Influenza A virus/*chemistry/genetics/metabolism ; Ion Channel Gating/drug effects ; Models, Molecular ; Protein Structure, Quaternary ; Protons ; Structure-Activity Relationship ; Tryptophan/metabolism ; Viral Matrix Proteins/*antagonists & inhibitors/*chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...