ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (9)
  • American Association for the Advancement of Science (AAAS)  (9)
  • 1
    Publication Date: 2001-09-08
    Description: Bcl-2 family members bearing only the BH3 domain are essential inducers of apoptosis. We identified a BH3-only protein, Bmf, and show that its BH3 domain is required both for binding to prosurvival Bcl-2 proteins and for triggering apoptosis. In healthy cells, Bmf is sequestered to myosin V motors by association with dynein light chain 2. Certain damage signals, such as loss of cell attachment (anoikis), unleash Bmf, allowing it to translocate and bind prosurvival Bcl-2 proteins. Thus, at least two mammalian BH3-only proteins, Bmf and Bim, function to sense intracellular damage by their localization to distinct cytoskeletal structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Puthalakath, H -- Villunger, A -- O'Reilly, L A -- Beaumont, J G -- Coultas, L -- Cheney, R E -- Huang, D C -- Strasser, A -- CA 80188/CA/NCI NIH HHS/ -- R29 DC003299/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1829-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Walter and Eliza Hall Institute of Medical Research, Melbourne, P.O. Royal Melbourne Hospital, 3050 VIC, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546872" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; *Anoikis ; Apoptosis Regulatory Proteins ; Calmodulin-Binding Proteins/*metabolism ; Carrier Proteins/*chemistry/genetics/*metabolism ; Cell Line ; Cytoskeleton/metabolism ; *Drosophila Proteins ; Dyneins ; Gene Expression Profiling ; Humans ; *Membrane Proteins ; Mice ; Molecular Motor Proteins/*metabolism ; Molecular Sequence Data ; Mutation ; Myeloid Cell Leukemia Sequence 1 Protein ; *Myosin Type V ; Neoplasm Proteins/genetics/metabolism ; Nerve Tissue Proteins/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-bcl-2/chemistry/genetics/metabolism ; RNA, Messenger/analysis/genetics ; Transfection ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-11-27
    Description: Apoptosis can be triggered by members of the Bcl-2 protein family, such as Bim, that share only the BH3 domain with this family. Gene targeting in mice revealed important physiological roles for Bim. Lymphoid and myeloid cells accumulated, T cell development was perturbed, and most older mice accumulated plasma cells and succumbed to autoimmune kidney disease. Lymphocytes were refractory to apoptotic stimuli such as cytokine deprivation, calcium ion flux, and microtubule perturbation but not to others. Thus, Bim is required for hematopoietic homeostasis and as a barrier to autoimmunity. Moreover, particular death stimuli appear to activate apoptosis through distinct BH3-only proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bouillet, P -- Metcalf, D -- Huang, D C -- Tarlinton, D M -- Kay, T W -- Kontgen, F -- Adams, J M -- Strasser, A -- CA43540/CA/NCI NIH HHS/ -- CA80188/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 26;286(5445):1735-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10576740" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins ; Autoimmune Diseases/etiology ; *Autoimmunity ; B-Lymphocytes/physiology ; Carrier Proteins/*physiology ; Cells, Cultured ; Crosses, Genetic ; Female ; Gene Targeting ; Glomerulonephritis/etiology ; Hematopoietic Stem Cells/physiology ; Homeostasis ; Leukocyte Count ; Leukocytes/*physiology ; Male ; *Membrane Proteins ; Mice ; Mice, Transgenic ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-bcl-2/physiology ; Signal Transduction ; T-Lymphocyte Subsets/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-02-10
    Description: A central issue in the regulation of apoptosis by the Bcl-2 family is whether its BH3-only members initiate apoptosis by directly binding to the essential cell-death mediators Bax and Bak, or whether they can act indirectly, by engaging their pro-survival Bcl-2-like relatives. Contrary to the direct-activation model, we show that Bax and Bak can mediate apoptosis without discernable association with the putative BH3-only activators (Bim, Bid, and Puma), even in cells with no Bim or Bid and reduced Puma. Our results indicate that BH3-only proteins induce apoptosis at least primarily by engaging the multiple pro-survival relatives guarding Bax and Bak.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Willis, Simon N -- Fletcher, Jamie I -- Kaufmann, Thomas -- van Delft, Mark F -- Chen, Lin -- Czabotar, Peter E -- Ierino, Helen -- Lee, Erinna F -- Fairlie, W Douglas -- Bouillet, Philippe -- Strasser, Andreas -- Kluck, Ruth M -- Adams, Jerry M -- Huang, David C S -- CA43540/CA/NCI NIH HHS/ -- CA80188/CA/NCI NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):856-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289999" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/chemistry/genetics/*metabolism ; BH3 Interacting Domain Death Agonist Protein/chemistry/genetics/*metabolism ; Cell Line ; Cells, Cultured ; Humans ; Ligands ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Knockout ; Models, Biological ; Mutation ; Myeloid Cell Leukemia Sequence 1 Protein ; Neoplasm Proteins/metabolism ; Protein Structure, Tertiary ; Proteins/metabolism ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-bcl-2/*metabolism ; Tumor Suppressor Proteins/genetics/metabolism ; bcl-2 Homologous Antagonist-Killer Protein/metabolism ; bcl-2-Associated X Protein/chemistry/*metabolism ; bcl-Associated Death Protein/metabolism ; bcl-X Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-09-01
    Description: The mammalian circadian clock involves a transcriptional feed back loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression, and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases: a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Only 22% of messenger RNA (mRNA) cycling genes are driven by de novo transcription, suggesting that both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694775/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694775/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koike, Nobuya -- Yoo, Seung-Hee -- Huang, Hung-Chung -- Kumar, Vivek -- Lee, Choogon -- Kim, Tae-Kyung -- Takahashi, Joseph S -- F32 DA024556/DA/NIDA NIH HHS/ -- R01 NS053616/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Oct 19;338(6105):349-54. doi: 10.1126/science.1226339. Epub 2012 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936566" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/metabolism ; Animals ; CLOCK Proteins/metabolism ; Chromatin/*metabolism ; Chromatin Assembly and Disassembly/genetics ; Circadian Clocks/*genetics ; Cryptochromes/*genetics ; DNA, Intergenic ; Enhancer Elements, Genetic ; *Epigenesis, Genetic ; Gene Expression Profiling ; Genetic Loci ; Histones/metabolism ; Liver/metabolism/*physiology ; Male ; Mice ; Mice, Inbred C57BL ; Period Circadian Proteins/genetics ; RNA Polymerase II/metabolism ; RNA, Messenger/genetics ; *Transcription, Genetic ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-12-21
    Description: The inbred mouse C57BL/6J is the reference strain for genome sequence and for most behavioral and physiological phenotypes. However, the International Knockout Mouse Consortium uses an embryonic stem cell line derived from a related C57BL/6N substrain. We found that C57BL/6N has a lower acute and sensitized response to cocaine and methamphetamine. We mapped a single causative locus and identified a nonsynonymous mutation of serine to phenylalanine (S968F) in Cytoplasmic FMRP interacting protein 2 (Cyfip2) as the causative variant. The S968F mutation destabilizes CYFIP2, and deletion of the C57BL/6N mutant allele leads to acute and sensitized cocaine-response phenotypes. We propose that CYFIP2 is a key regulator of cocaine response in mammals and present a framework to use mouse substrains to identify previously unknown genes and alleles regulating behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500108/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500108/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, Vivek -- Kim, Kyungin -- Joseph, Chryshanthi -- Kourrich, Said -- Yoo, Seung-Hee -- Huang, Hung Chung -- Vitaterna, Martha H -- de Villena, Fernando Pardo-Manuel -- Churchill, Gary -- Bonci, Antonello -- Takahashi, Joseph S -- F32 DA024556/DA/NIDA NIH HHS/ -- F32DA024556/DA/NIDA NIH HHS/ -- U01 MH061915/MH/NIMH NIH HHS/ -- U01MH61915/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Dec 20;342(6165):1508-12. doi: 10.1126/science.1245503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357318" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Central Nervous System Stimulants/administration & dosage ; Cocaine/*administration & dosage ; Cocaine-Related Disorders/*genetics/*psychology ; *Drug-Seeking Behavior ; Methamphetamine/administration & dosage ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Motor Activity/drug effects ; Mutation ; Nerve Tissue Proteins/genetics/*physiology ; Phenylalanine/genetics ; Polymorphism, Single Nucleotide ; Psychomotor Performance/drug effects ; Quantitative Trait Loci ; Serine/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-08-02
    Description: Reelin is an extracellular protein that is crucial for layer formation in the embryonic brain. Here, we demonstrate that Reelin functions postnatally to regulate the development of the neuromuscular junction. Reelin is required for motor end-plate maturation and proper nerve-muscle connectivity, and it directly promotes synapse elimination. Unlike layer formation, neuromuscular junction development requires a function of Reelin that is not mediated by Disabled1 or very-low-density lipoprotein receptors and apolipoprotein E receptor 2 receptors but by a distinct mechanism involving its protease activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quattrocchi, Carlo C -- Huang, Cheng -- Niu, Sanyong -- Sheldon, Michael -- Benhayon, David -- Cartwright, Joiner Jr -- Mosier, Dennis R -- Keller, Flavio -- D'Arcangelo, Gabriella -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):649-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Cain Foundation Laboratories, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893944" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Axons/metabolism ; Cell Adhesion Molecules, Neuronal/genetics/metabolism/pharmacology/*physiology ; Culture Media, Conditioned ; Diaphragm/innervation ; Extracellular Matrix Proteins/genetics/metabolism/pharmacology/*physiology ; LDL-Receptor Related Proteins ; Mice ; Mice, Neurologic Mutants ; Microscopy, Confocal ; Microscopy, Electron ; Motor Endplate/ultrastructure ; Motor Neurons/metabolism ; Muscle, Skeletal/innervation ; Mutation ; Nerve Tissue Proteins/genetics/metabolism ; Neuromuscular Junction/*growth & ; development/metabolism/*physiology/ultrastructure ; Receptors, LDL/genetics/metabolism ; Receptors, Lipoprotein/genetics/metabolism ; Schwann Cells/metabolism ; Serine Endopeptidases ; Serine Proteinase Inhibitors/pharmacology ; Sulfones/pharmacology ; Synapses/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-06-28
    Description: Mammals are coinfected by multiple pathogens that interact through unknown mechanisms. We found that helminth infection, characterized by the induction of the cytokine interleukin-4 (IL-4) and the activation of the transcription factor Stat6, reactivated murine gamma-herpesvirus infection in vivo. IL-4 promoted viral replication and blocked the antiviral effects of interferon-gamma (IFNgamma) by inducing Stat6 binding to the promoter for an important viral transcriptional transactivator. IL-4 also reactivated human Kaposi's sarcoma-associated herpesvirus from latency in cultured cells. Exogenous IL-4 plus blockade of IFNgamma reactivated latent murine gamma-herpesvirus infection in vivo, suggesting a "two-signal" model for viral reactivation. Thus, chronic herpesvirus infection, a component of the mammalian virome, is regulated by the counterpoised actions of multiple cytokines on viral promoters that have evolved to sense host immune status.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531374/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531374/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reese, T A -- Wakeman, B S -- Choi, H S -- Hufford, M M -- Huang, S C -- Zhang, X -- Buck, M D -- Jezewski, A -- Kambal, A -- Liu, C Y -- Goel, G -- Murray, P J -- Xavier, R J -- Kaplan, M H -- Renne, R -- Speck, S H -- Artyomov, M N -- Pearce, E J -- Virgin, H W -- AI032573/AI/NIAID NIH HHS/ -- AI084887/AI/NIAID NIH HHS/ -- CA119917/CA/NCI NIH HHS/ -- CA164062/CA/NCI NIH HHS/ -- CA52004/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- R01 AI032573/AI/NIAID NIH HHS/ -- R01 AI084887/AI/NIAID NIH HHS/ -- R01 AI095282/AI/NIAID NIH HHS/ -- R01 CA052004/CA/NCI NIH HHS/ -- R01 CA119917/CA/NCI NIH HHS/ -- R01 CA164062/CA/NCI NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):573-7. doi: 10.1126/science.1254517. Epub 2014 Jun 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Emory University Vaccine Center, Atlanta, GA 30322, USA. ; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA. ; Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. ; Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. ; Departments of Infectious Diseases and Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. virgin@wustl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24968940" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Gammaherpesvirinae/genetics/*physiology ; Gene Expression Regulation, Viral ; Herpesvirus 8, Human/genetics/*physiology ; Humans ; Interferon-gamma/*immunology/pharmacology ; Interleukin-4/*metabolism/pharmacology ; Macrophages/immunology ; Mice ; Mice, Inbred C57BL ; Nematospiroides dubius/immunology ; Ovum/immunology ; Promoter Regions, Genetic ; STAT6 Transcription Factor/*metabolism ; Schistosoma mansoni/*immunology ; Schistosomiasis mansoni/*immunology ; Strongylida Infections/immunology ; Virus Activation/drug effects/genetics/*physiology ; Virus Latency/physiology ; Virus Replication/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-01
    Description: Although interferon (IFN) signaling induces genes that limit viral infection, many pathogenic viruses overcome this host response. As an example, 2'-O methylation of the 5' cap of viral RNA subverts mammalian antiviral responses by evading restriction of Ifit1, an IFN-stimulated gene that regulates protein synthesis. However, alphaviruses replicate efficiently in cells expressing Ifit1 even though their genomic RNA has a 5' cap lacking 2'-O methylation. We show that pathogenic alphaviruses use secondary structural motifs within the 5' untranslated region (UTR) of their RNA to alter Ifit1 binding and function. Mutations within the 5'-UTR affecting RNA structural elements enabled restriction by or antagonism of Ifit1 in vitro and in vivo. These results identify an evasion mechanism by which viruses use RNA structural motifs to avoid immune restriction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209899/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209899/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hyde, Jennifer L -- Gardner, Christina L -- Kimura, Taishi -- White, James P -- Liu, Gai -- Trobaugh, Derek W -- Huang, Cheng -- Tonelli, Marco -- Paessler, Slobodan -- Takeda, Kiyoshi -- Klimstra, William B -- Amarasinghe, Gaya K -- Diamond, Michael S -- AI049820/AI/NIAID NIH HHS/ -- P41GM66326/GM/NIGMS NIH HHS/ -- P41RR02301/RR/NCRR NIH HHS/ -- R01 AI083383/AI/NIAID NIH HHS/ -- R01 AI104972/AI/NIAID NIH HHS/ -- U19 AI083019/AI/NIAID NIH HHS/ -- UL1 TR000071/TR/NCATS NIH HHS/ -- UL1TR000071/TR/NCATS NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 14;343(6172):783-7. doi: 10.1126/science.1248465. Epub 2014 Jan 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24482115" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/immunology ; Alphavirus/*pathogenicity/physiology ; Alphavirus Infections/*immunology/virology ; Animals ; Carrier Proteins/antagonists & inhibitors/genetics/immunology ; Host-Pathogen Interactions/*immunology ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Mutation ; Nucleic Acid Conformation ; RNA Caps/*chemistry/*immunology ; RNA, Viral/*chemistry/*immunology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-11-21
    Description: Genetically encoded voltage indicators (GEVIs) are a promising technology for fluorescence readout of millisecond-scale neuronal dynamics. Previous GEVIs had insufficient signaling speed and dynamic range to resolve action potentials in live animals. We coupled fast voltage-sensing domains from a rhodopsin protein to bright fluorophores through resonance energy transfer. The resulting GEVIs are sufficiently bright and fast to report neuronal action potentials and membrane voltage dynamics in awake mice and flies, resolving fast spike trains with 0.2-millisecond timing precision at spike detection error rates orders of magnitude better than previous GEVIs. In vivo imaging revealed sensory-evoked responses, including somatic spiking, dendritic dynamics, and intracellular voltage propagation. These results empower in vivo optical studies of neuronal electrophysiology and coding and motivate further advancements in high-speed microscopy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gong, Yiyang -- Huang, Cheng -- Li, Jin Zhong -- Grewe, Benjamin F -- Zhang, Yanping -- Eismann, Stephan -- Schnitzer, Mark J -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Dec 11;350(6266):1361-6. doi: 10.1126/science.aab0810. Epub 2015 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉James H. Clark Center, Stanford University, Stanford, CA 94305, USA. CNC Program, Stanford University, Stanford, CA 94305, USA. Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA. yiyang.gong@duke.edu mschnitz@stanford.edu. ; James H. Clark Center, Stanford University, Stanford, CA 94305, USA. ; James H. Clark Center, Stanford University, Stanford, CA 94305, USA. CNC Program, Stanford University, Stanford, CA 94305, USA. ; James H. Clark Center, Stanford University, Stanford, CA 94305, USA. CNC Program, Stanford University, Stanford, CA 94305, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. ; James H. Clark Center, Stanford University, Stanford, CA 94305, USA. CNC Program, Stanford University, Stanford, CA 94305, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. yiyang.gong@duke.edu mschnitz@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586188" target="_blank"〉PubMed〈/a〉
    Keywords: *Action Potentials ; Animals ; *Bioluminescence Resonance Energy Transfer Techniques ; *Biosensing Techniques ; Dendrites/physiology ; Drosophila melanogaster/physiology ; *Evoked Potentials, Somatosensory ; *Fluorescence Resonance Energy Transfer ; Green Fluorescent Proteins/chemistry/genetics ; Mice ; Neurons/*physiology ; Recombinant Fusion Proteins/chemistry/genetics ; Rhodopsin/chemistry/genetics ; Smell
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...