ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (14)
  • Protein Binding  (8)
  • American Association for the Advancement of Science (AAAS)  (12)
  • Nature Publishing Group (NPG)  (8)
  • American Geophysical Union (AGU)
  • Springer
  • 2005-2009  (20)
  • 1935-1939
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (12)
  • Nature Publishing Group (NPG)  (8)
  • American Geophysical Union (AGU)
  • Springer
Years
Year
  • 1
    Publication Date: 2008-08-23
    Description: Adipose tissue is central to the regulation of energy balance. Two functionally different types of fat are present in mammals: white adipose tissue, the primary site of triglyceride storage, and brown adipose tissue, which is specialized in energy expenditure and can counteract obesity. Factors that specify the developmental fate and function of white and brown adipose tissue remain poorly understood. Here we demonstrate that whereas some members of the family of bone morphogenetic proteins (BMPs) support white adipocyte differentiation, BMP7 singularly promotes differentiation of brown preadipocytes even in the absence of the normally required hormonal induction cocktail. BMP7 activates a full program of brown adipogenesis including induction of early regulators of brown fat fate PRDM16 (PR-domain-containing 16; ref. 4) and PGC-1alpha (peroxisome proliferator-activated receptor-gamma (PPARgamma) coactivator-1alpha; ref. 5), increased expression of the brown-fat-defining marker uncoupling protein 1 (UCP1) and adipogenic transcription factors PPARgamma and CCAAT/enhancer-binding proteins (C/EBPs), and induction of mitochondrial biogenesis via p38 mitogen-activated protein (MAP) kinase-(also known as Mapk14) and PGC-1-dependent pathways. Moreover, BMP7 triggers commitment of mesenchymal progenitor cells to a brown adipocyte lineage, and implantation of these cells into nude mice results in development of adipose tissue containing mostly brown adipocytes. Bmp7 knockout embryos show a marked paucity of brown fat and an almost complete absence of UCP1. Adenoviral-mediated expression of BMP7 in mice results in a significant increase in brown, but not white, fat mass and leads to an increase in energy expenditure and a reduction in weight gain. These data reveal an important role of BMP7 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro, and provide a potential new therapeutic approach for the treatment of obesity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745972/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745972/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tseng, Yu-Hua -- Kokkotou, Efi -- Schulz, Tim J -- Huang, Tian Lian -- Winnay, Jonathon N -- Taniguchi, Cullen M -- Tran, T Thien -- Suzuki, Ryo -- Espinoza, Daniel O -- Yamamoto, Yuji -- Ahrens, Molly J -- Dudley, Andrew T -- Norris, Andrew W -- Kulkarni, Rohit N -- Kahn, C Ronald -- K08 DK064906/DK/NIDDK NIH HHS/ -- K08 DK64906/DK/NIDDK NIH HHS/ -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK040561-13/DK/NIDDK NIH HHS/ -- P30 DK46200/DK/NIDDK NIH HHS/ -- R01 DK 060837/DK/NIDDK NIH HHS/ -- R01 DK077097/DK/NIDDK NIH HHS/ -- R01 DK077097-01A1/DK/NIDDK NIH HHS/ -- R01 DK077097-02/DK/NIDDK NIH HHS/ -- R01 DK67536/DK/NIDDK NIH HHS/ -- R21 DK070722/DK/NIDDK NIH HHS/ -- R21 DK070722-01/DK/NIDDK NIH HHS/ -- R21 DK070722-02/DK/NIDDK NIH HHS/ -- England -- Nature. 2008 Aug 21;454(7207):1000-4. doi: 10.1038/nature07221.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section on Obesity and Hormone Action, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA. yu-hua.tseng@joslin.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719589" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; *Adipogenesis ; Adipose Tissue, Brown/*growth & development/*metabolism ; Adipose Tissue, White/growth & development ; Animals ; Bone Morphogenetic Protein 7 ; Bone Morphogenetic Proteins/*metabolism ; Cell Line ; *Energy Metabolism/genetics ; Male ; Mesenchymal Stromal Cells/cytology/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Nude ; Mitochondria/physiology ; Thermogenesis ; Transforming Growth Factor beta/*metabolism ; p38 Mitogen-Activated Protein Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-04-28
    Description: Dengue fever is the most frequent arthropod-borne viral disease of humans, with almost half of the world's population at risk of infection. The high prevalence, lack of an effective vaccine, and absence of specific treatment conspire to make dengue fever a global public health threat. Given their compact genomes, dengue viruses (DENV-1-4) and other flaviviruses probably require an extensive number of host factors; however, only a limited number of human, and an even smaller number of insect host factors, have been identified. Here we identify insect host factors required for DENV-2 propagation, by carrying out a genome-wide RNA interference screen in Drosophila melanogaster cells using a well-established 22,632 double-stranded RNA library. This screen identified 116 candidate dengue virus host factors (DVHFs). Although some were previously associated with flaviviruses (for example, V-ATPases and alpha-glucosidases), most of the DVHFs were newly implicated in dengue virus propagation. The dipteran DVHFs had 82 readily recognizable human homologues and, using a targeted short-interfering-RNA screen, we showed that 42 of these are human DVHFs. This indicates notable conservation of required factors between dipteran and human hosts. This work suggests new approaches to control infection in the insect vector and the mammalian host.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462662/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462662/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sessions, October M -- Barrows, Nicholas J -- Souza-Neto, Jayme A -- Robinson, Timothy J -- Hershey, Christine L -- Rodgers, Mary A -- Ramirez, Jose L -- Dimopoulos, George -- Yang, Priscilla L -- Pearson, James L -- Garcia-Blanco, Mariano A -- 1R01AI061576-01/AI/NIAID NIH HHS/ -- 1R01AI076442/AI/NIAID NIH HHS/ -- 1SA0RR024572-1/RR/NCRR NIH HHS/ -- 5P30-CA14236/CA/NCI NIH HHS/ -- 5U54-AI057157-05S/AI/NIAID NIH HHS/ -- R01 AI076442/AI/NIAID NIH HHS/ -- R01 AI078997/AI/NIAID NIH HHS/ -- R01 AI078997-01A1/AI/NIAID NIH HHS/ -- R01 AI078997-02/AI/NIAID NIH HHS/ -- R01 GM067761/GM/NIGMS NIH HHS/ -- R21 AI090188/AI/NIAID NIH HHS/ -- R21 AI090188-01/AI/NIAID NIH HHS/ -- R21 NS063845/NS/NINDS NIH HHS/ -- R21-AI64925/AI/NIAID NIH HHS/ -- T32 AI007417/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54 AI057159/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Apr 23;458(7241):1047-50. doi: 10.1038/nature07967.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19396146" target="_blank"〉PubMed〈/a〉
    Keywords: Aedes/genetics/virology ; Animals ; Cell Line ; Conserved Sequence/*genetics/physiology ; Dengue Virus/*physiology ; Drosophila melanogaster/*genetics/physiology/*virology ; Gene Knockdown Techniques ; Genome, Insect/genetics ; Host-Pathogen Interactions/*genetics ; Humans ; Insect Vectors/*genetics/*physiology ; RNA Interference ; RNA, Double-Stranded/genetics/metabolism ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-08-28
    Description: Sex in birds is chromosomally based, as in mammals, but the sex chromosomes are different and the mechanism of avian sex determination has been a long-standing mystery. In the chicken and all other birds, the homogametic sex is male (ZZ) and the heterogametic sex is female (ZW). Two hypotheses have been proposed for the mechanism of avian sex determination. The W (female) chromosome may carry a dominant-acting ovary determinant. Alternatively, the dosage of a Z-linked gene may mediate sex determination, two doses being required for male development (ZZ). A strong candidate avian sex-determinant under the dosage hypothesis is the conserved Z-linked gene, DMRT1 (doublesex and mab-3-related transcription factor 1). Here we used RNA interference (RNAi) to knock down DMRT1 in early chicken embryos. Reduction of DMRT1 protein expression in ovo leads to feminization of the embryonic gonads in genetically male (ZZ) embryos. Affected males show partial sex reversal, characterized by feminization of the gonads. The feminized left gonad shows female-like histology, disorganized testis cords and a decline in the testicular marker, SOX9. The ovarian marker, aromatase, is ectopically activated. The feminized right gonad shows a more variable loss of DMRT1 and ectopic aromatase activation, suggesting differential sensitivity to DMRT1 between left and right gonads. Germ cells also show a female pattern of distribution in the feminized male gonads. These results indicate that DMRT1 is required for testis determination in the chicken. Our data support the Z dosage hypothesis for avian sex determination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Craig A -- Roeszler, Kelly N -- Ohnesorg, Thomas -- Cummins, David M -- Farlie, Peter G -- Doran, Timothy J -- Sinclair, Andrew H -- England -- Nature. 2009 Sep 10;461(7261):267-71. doi: 10.1038/nature08298. Epub 2009 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Murdoch Children's Research Institute and Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Melbourne, Victoria 3052, Australia. craig.smith@mcri.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19710650" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers/analysis ; Cell Line ; Chick Embryo ; Chickens/*genetics/*physiology ; Disorders of Sex Development ; Down-Regulation ; Female ; Gene Dosage/genetics ; Male ; MicroRNAs/genetics/metabolism ; Models, Genetic ; Ovary/embryology/metabolism ; RNA Interference ; SOX9 Transcription Factor/genetics/metabolism ; *Sex Characteristics ; Sex Chromosomes/*genetics ; *Sex Determination Processes ; Testis/embryology/metabolism ; Transcription Factors/deficiency/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-12-25
    Description: Evenly spaced nucleosomes directly correlate with condensed chromatin and gene silencing. The ATP-dependent chromatin assembly factor (ACF) forms such structures in vitro and is required for silencing in vivo. ACF generates and maintains nucleosome spacing by constantly moving a nucleosome towards the longer flanking DNA faster than the shorter flanking DNA. How the enzyme rapidly moves back and forth between both sides of a nucleosome to accomplish bidirectional movement is unknown. Here we show that nucleosome movement depends cooperatively on two ACF molecules, indicating that ACF functions as a dimer of ATPases. Further, the nucleotide state determines whether the dimer closely engages one or both sides of the nucleosome. Three-dimensional reconstruction by single-particle electron microscopy of the ATPase-nucleosome complex in an activated ATP state reveals a dimer architecture in which the two ATPases face each other. Our results indicate a model in which the two ATPases work in a coordinated manner, taking turns to engage either side of a nucleosome, thereby allowing processive bidirectional movement. This novel dimeric motor mechanism differs from that of dimeric motors such as kinesin and dimeric helicases that processively translocate unidirectionally and reflects the unique challenges faced by motors that move nucleosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869534/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869534/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Racki, Lisa R -- Yang, Janet G -- Naber, Nariman -- Partensky, Peretz D -- Acevedo, Ashley -- Purcell, Thomas J -- Cooke, Roger -- Cheng, Yifan -- Narlikar, Geeta J -- R01 GM073767/GM/NIGMS NIH HHS/ -- R01 GM073767-01/GM/NIGMS NIH HHS/ -- R01 GM073767-02/GM/NIGMS NIH HHS/ -- R01 GM073767-03/GM/NIGMS NIH HHS/ -- R01 GM073767-03S1/GM/NIGMS NIH HHS/ -- R01 GM073767-04/GM/NIGMS NIH HHS/ -- R01 GM073767-05/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 24;462(7276):1016-21. doi: 10.1038/nature08621.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20033039" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Chromatin Assembly and Disassembly/*physiology ; Dimerization ; Gene Silencing/physiology ; Histones/metabolism ; Humans ; Microscopy, Electron, Transmission ; *Models, Molecular ; Multiprotein Complexes/*metabolism ; Nucleosomes/chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Transcription Factors/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-08-19
    Description: Integral beta-barrel proteins are found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. The machine that assembles these proteins contains an integral membrane protein, called YaeT in Escherichia coli, which has one or more polypeptide transport-associated (POTRA) domains. The crystal structure of a periplasmic fragment of YaeT reveals the POTRA domain fold and suggests a model for how POTRA domains can bind different peptide sequences, as required for a machine that handles numerous beta-barrel protein precursors. Analysis of POTRA domain deletions shows which are essential and provides a view of the spatial organization of this assembly machine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Seokhee -- Malinverni, Juliana C -- Sliz, Piotr -- Silhavy, Thomas J -- Harrison, Stephen C -- Kahne, Daniel -- GM34821/GM/NIGMS NIH HHS/ -- GM66174/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 17;317(5840):961-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702946" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Outer Membrane Proteins/*chemistry/genetics/*metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Dimerization ; Escherichia coli/*chemistry/*metabolism ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Lipoproteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-01-24
    Description: Membrane fusion between vesicles and target membranes involves the zippering of a four-helix bundle generated by constituent helices derived from target- and vesicle-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). In neurons, the protein complexin clamps otherwise spontaneous fusion by SNARE proteins, allowing neurotransmitters and other mediators to be secreted when and where they are needed as this clamp is released. The membrane-proximal accessory helix of complexin is necessary for clamping, but its mechanism of action is unknown. Here, we present experiments using a reconstituted fusion system that suggest a simple model in which the complexin accessory helix forms an alternative four-helix bundle with the target-SNARE near the membrane, preventing the vesicle-SNARE from completing its zippering.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736854/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736854/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giraudo, Claudio G -- Garcia-Diaz, Alejandro -- Eng, William S -- Chen, Yuhang -- Hendrickson, Wayne A -- Melia, Thomas J -- Rothman, James E -- R01 GM071458/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 23;323(5913):512-6. doi: 10.1126/science.1166500.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, 1150 Saint Nicholas Avenue, Russ Berrie Building, Room 520, New York, NY 10032, USA. claudio.giraudo@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19164750" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport ; Amino Acid Motifs ; Amino Acid Sequence ; HeLa Cells ; Humans ; Hydrophobic and Hydrophilic Interactions ; *Membrane Fusion ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Mutation ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Secondary ; Recombinant Fusion Proteins/chemistry/metabolism ; SNARE Proteins/*chemistry/*metabolism ; Vesicle-Associated Membrane Protein 2/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-05-20
    Description: Failure of cells to respond to DNA damage is a primary event associated with mutagenesis and environmental toxicity. To map the transcriptional network controlling the damage response, we measured genomewide binding locations for 30 damage-related transcription factors (TFs) after exposure of yeast to methyl-methanesulfonate (MMS). The resulting 5272 TF-target interactions revealed extensive changes in the pattern of promoter binding and identified damage-specific binding motifs. As systematic functional validation, we identified interactions for which the target changed expression in wild-type cells in response to MMS but was nonresponsive in cells lacking the TF. Validated interactions were assembled into causal pathway models that provide global hypotheses of how signaling, transcription, and phenotype are integrated after damage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811083/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811083/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Workman, Christopher T -- Mak, H Craig -- McCuine, Scott -- Tagne, Jean-Bosco -- Agarwal, Maya -- Ozier, Owen -- Begley, Thomas J -- Samson, Leona D -- Ideker, Trey -- R01 ES014811/ES/NIEHS NIH HHS/ -- R01 ES014811-01A1/ES/NIEHS NIH HHS/ -- R01 GM070743/GM/NIGMS NIH HHS/ -- R01 GM070743-01/GM/NIGMS NIH HHS/ -- R01 GM070743-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 May 19;312(5776):1054-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16709784" target="_blank"〉PubMed〈/a〉
    Keywords: *DNA Damage ; DNA Repair/genetics/physiology ; DNA, Fungal ; Fungal Proteins/metabolism ; Gene Expression Regulation, Fungal ; Methyl Methanesulfonate ; Promoter Regions, Genetic ; Protein Binding ; Saccharomyces ; Signal Transduction ; Systems Theory ; Transcription Factors/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-02-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, T John -- New York, N.Y. -- Science. 2006 Feb 3;311(5761):606-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16459361" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; *Editorial Policies ; Embryo, Mammalian/cytology ; Humans ; Peer Review, Research ; Periodicals as Topic ; *Publishing ; *Scientific Misconduct ; Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-01-26
    Description: For gene regulation, some transcriptional activators bind periodically to promoters with either a fast (approximately 1 minute) or a slow (approximately 15 to 90 minutes) cycle. It is uncertain whether the fast cycle occurs on natural promoters, and the function of either cycle in transcription remains unclear. We report that fast and slow cycling can occur simultaneously on an endogenous yeast promoter and that slow cycling in this system reflects an oscillation in the fraction of accessible promoters rather than the recruitment and release of stably bound transcriptional activators. This observation, combined with single-cell measurements of messenger RNA (mRNA) production, argues that fast cycling initiates transcription and that slow cycling regulates the quantity of mRNA produced. These findings counter the prevailing view that slow cycling initiates transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karpova, Tatiana S -- Kim, Min J -- Spriet, Corentin -- Nalley, Kip -- Stasevich, Timothy J -- Kherrouche, Zoulika -- Heliot, Laurent -- McNally, James G -- New York, N.Y. -- Science. 2008 Jan 25;319(5862):466-9. doi: 10.1126/science.1150559.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research Core Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218898" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carrier Proteins/*genetics ; Chromatin Immunoprecipitation ; Chromosomal Proteins, Non-Histone/metabolism ; Copper/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Fluorescence Recovery After Photobleaching ; Metallothionein ; *Promoter Regions, Genetic ; Protein Binding ; RNA, Fungal/biosynthesis ; RNA, Messenger/biosynthesis ; Recombinant Fusion Proteins ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Time Factors ; Transcription Factors/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-12-02
    Description: MicroRNAs comprise a broad class of small non-coding RNAs that control expression of complementary target messenger RNAs. Dysregulation of microRNAs by several mechanisms has been described in various disease states including cardiac disease. Whereas previous studies of cardiac disease have focused on microRNAs that are primarily expressed in cardiomyocytes, the role of microRNAs expressed in other cell types of the heart is unclear. Here we show that microRNA-21 (miR-21, also known as Mirn21) regulates the ERK-MAP kinase signalling pathway in cardiac fibroblasts, which has impacts on global cardiac structure and function. miR-21 levels are increased selectively in fibroblasts of the failing heart, augmenting ERK-MAP kinase activity through inhibition of sprouty homologue 1 (Spry1). This mechanism regulates fibroblast survival and growth factor secretion, apparently controlling the extent of interstitial fibrosis and cardiac hypertrophy. In vivo silencing of miR-21 by a specific antagomir in a mouse pressure-overload-induced disease model reduces cardiac ERK-MAP kinase activity, inhibits interstitial fibrosis and attenuates cardiac dysfunction. These findings reveal that microRNAs can contribute to myocardial disease by an effect in cardiac fibroblasts. Our results validate miR-21 as a disease target in heart failure and establish the therapeutic efficacy of microRNA therapeutic intervention in a cardiovascular disease setting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thum, Thomas -- Gross, Carina -- Fiedler, Jan -- Fischer, Thomas -- Kissler, Stephan -- Bussen, Markus -- Galuppo, Paolo -- Just, Steffen -- Rottbauer, Wolfgang -- Frantz, Stefan -- Castoldi, Mirco -- Soutschek, Jurgen -- Koteliansky, Victor -- Rosenwald, Andreas -- Basson, M Albert -- Licht, Jonathan D -- Pena, John T R -- Rouhanifard, Sara H -- Muckenthaler, Martina U -- Tuschl, Thomas -- Martin, Gail R -- Bauersachs, Johann -- Engelhardt, Stefan -- R01 CA059998/CA/NCI NIH HHS/ -- R01 CA78711/CA/NCI NIH HHS/ -- England -- Nature. 2008 Dec 18;456(7224):980-4. doi: 10.1038/nature07511. Epub 2008 Nov 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine I, Interdisziplinares Zentrum fur Klinische Forschung (IZKF), University of Wuerzburg, 97080 Wuerzburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19043405" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cardiomyopathies/*genetics/*metabolism/pathology/therapy ; Cell Line ; Cell Survival ; Cells, Cultured ; Disease Models, Animal ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Fibroblasts/*metabolism ; Gene Silencing ; Humans ; *MAP Kinase Signaling System ; Male ; Mice ; Mice, Transgenic ; MicroRNAs/*genetics ; Myocytes, Cardiac/cytology/metabolism ; Rats
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...