ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-01-29
    Description: Pure cultures of termite gut spirochetes were obtained and were shown to catalyze the synthesis of acetate from H2 plus CO2. The 16S ribosomal DNA sequences of two strains were 98 percent similar and were affiliated with those of the genus Treponema. However, neither was closely related to any known treponeme. These findings imply an important role for spirochetes in termite nutrition, help to reconcile the dominance of acetogenesis over methanogenesis as an H2 sink in termite hindguts, suggest that the motility of termite gut protozoa by means of attached spirochetes may be based on interspecies H2 transfer, and underscore the importance of termites as a rich reservoir of novel microbial diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leadbetter, J R -- Schmidt, T M -- Graber, J R -- Breznak, J A -- New York, N.Y. -- Science. 1999 Jan 29;283(5402):686-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824-1101, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9924028" target="_blank"〉PubMed〈/a〉
    Keywords: Acetates/*metabolism ; Anaerobiosis ; Animals ; Carbon Dioxide/metabolism ; Culture Media ; DNA, Bacterial/chemistry/genetics ; DNA, Ribosomal/chemistry/genetics ; Digestive System/microbiology ; Hydrogen/metabolism ; Isoptera/*microbiology ; Molecular Sequence Data ; Oxidation-Reduction ; RNA, Ribosomal, 16S/genetics ; Spirochaetaceae/classification/isolation & purification/metabolism/physiology ; Treponema/classification/isolation & purification/*metabolism/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-05-23
    Description: During translation errors of aminoacylation are corrected in editing reactions which ensure that an amino acid is stably attached to its corresponding transfer RNA (tRNA). Previous studies have not shown whether the tRNA nucleotides needed for effecting translational editing are the same as or distinct from those required for aminoacylation, but several considerations have suggested that they are the same. Here, designed tRNAs that are highly active for aminoacylation but are not active in translational editing are presented. The editing reaction can be controlled by manipulation of nucleotides at the corner of the L-shaped tRNA. In contrast, these manipulations do not affect aminoacylation. These results demonstrate the segregation of nucleotide determinants for the editing and aminoacylation functions of tRNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hale, S P -- Auld, D S -- Schmidt, E -- Schimmel, P -- GM15539/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 May 23;276(5316):1250-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9157882" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Base Sequence ; Binding Sites ; Cloning, Molecular ; Escherichia coli ; Molecular Sequence Data ; Nucleic Acid Conformation ; *RNA Editing ; RNA, Transfer/*metabolism ; RNA, Transfer, Ile/chemistry/metabolism ; RNA, Transfer, Val/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-11-05
    Description: Reactive and potentially toxic cofactors such as copper ions are imported into eukaryotic cells and incorporated into target proteins by unknown mechanisms. Atx1, a prototypical copper chaperone protein from yeast, has now been shown to act as a soluble cytoplasmic copper(I) receptor that can adopt either a two- or three-coordinate metal center in the active site. Atx1 also associated directly with the Atx1-like cytosolic domains of Ccc2, a vesicular protein defined in genetic studies as a member of the copper-trafficking pathway. The unusual structure and dynamics of Atx1 suggest a copper exchange function for this protein and related domains in the Menkes and Wilson disease proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pufahl, R A -- Singer, C P -- Peariso, K L -- Lin, S J -- Schmidt, P J -- Fahrni, C J -- Culotta, V C -- Penner-Hahn, J E -- O'Halloran, T V -- GM-38047/GM/NIGMS NIH HHS/ -- GM-50016/GM/NIGMS NIH HHS/ -- GM-54111/GM/NIGMS NIH HHS/ -- R01 GM054111/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Oct 31;278(5339):853-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9346482" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Carrier Proteins ; *Cation Transport Proteins ; Copper/*metabolism ; Escherichia coli ; Fungal Proteins/metabolism/*physiology ; Humans ; Molecular Chaperones/*physiology ; Molecular Sequence Data ; Recombinant Proteins ; Saccharomyces cerevisiae/metabolism/*physiology ; *Saccharomyces cerevisiae Proteins ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-12-08
    Description: To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previously undescribed, mostly noncoding transcripts, 89 of them in antisense configuration to known genes. We identified 341 operons, of which 139 are polycistronic; almost half of the latter show decaying expression in a staircase-like manner. Under various conditions, operons could be divided into 447 smaller transcriptional units, resulting in many alternative transcripts. Frequent antisense transcripts, alternative transcripts, and multiple regulators per gene imply a highly dynamic transcriptome, more similar to that of eukaryotes than previously thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guell, Marc -- van Noort, Vera -- Yus, Eva -- Chen, Wei-Hua -- Leigh-Bell, Justine -- Michalodimitrakis, Konstantinos -- Yamada, Takuji -- Arumugam, Manimozhiyan -- Doerks, Tobias -- Kuhner, Sebastian -- Rode, Michaela -- Suyama, Mikita -- Schmidt, Sabine -- Gavin, Anne-Claude -- Bork, Peer -- Serrano, Luis -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1268-71. doi: 10.1126/science.1176951.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965477" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Gene Expression Profiling ; *Gene Expression Regulation, Bacterial ; Genes, Bacterial ; *Genome, Bacterial ; Molecular Sequence Data ; Mycoplasma pneumoniae/*genetics/metabolism ; Oligonucleotide Array Sequence Analysis ; Operon ; RNA, Antisense/genetics/metabolism ; RNA, Bacterial/*genetics/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Untranslated/analysis/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1995-08-18
    Description: A candidate gene for the chromosome 1 Alzheimer's disease (AD) locus was identified (STM2). The predicted amino acid sequence for STM2 is homologous to that of the recently cloned chromosome 14 AD gene (S182). A point mutation in STM2, resulting in the substitution of an isoleucine for an asparagine (N141l), was identified in affected people from Volga German AD kindreds. This N141l mutation occurs at an amino acid residue that is conserved in human S182 and in the mouse S182 homolog. The presence of missense mutations in AD subjects in two highly similar genes strongly supports the hypothesis that mutations in both are pathogenic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levy-Lahad, E -- Wasco, W -- Poorkaj, P -- Romano, D M -- Oshima, J -- Pettingell, W H -- Yu, C E -- Jondro, P D -- Schmidt, S D -- Wang, K -- AG0513C/AG/NIA NIH HHS/ -- R01-AG11762/AG/NIA NIH HHS/ -- R01-AG11899/AG/NIA NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1995 Aug 18;269(5226):973-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Geriatric Research Education, and Clinical Center (182B), Veterans Affairs Medical Center, Seattle, WA 98108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7638622" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Alzheimer Disease/ethnology/*genetics ; Amino Acid Sequence ; Base Sequence ; Chromosome Mapping ; Chromosomes, Human, Pair 1/*genetics ; Cloning, Molecular ; DNA, Complementary/genetics ; Female ; Gene Expression ; Germany/ethnology ; Humans ; Lod Score ; Male ; Membrane Proteins/chemistry/*genetics ; Middle Aged ; Molecular Sequence Data ; Mutation ; Pedigree ; Point Mutation ; Presenilin-2
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-11-29
    Description: The Arabidopsis gene AGAMOUS is required for male and female reproductive organ development and for floral determinacy. Reverse genetics allowed the isolation of a transposon-induced mutation in ZAG1, the maize homolog of AGAMOUS. ZAG1 mutants exhibited a loss of determinacy, but the identity of reproductive organs was largely unaffected. This suggested a redundancy in maize sex organ specification that led to the identification and cloning of a second AGAMOUS homolog, ZMM2, that has a pattern of expression distinct from that of ZAG1. C-function organ identity in maize (as defined by the A, B, C model of floral organ development) may therefore be orchestrated by two closely related genes, ZAG1 and ZMM2, with overlapping but nonidentical activities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mena, M -- Ambrose, B A -- Meeley, R B -- Briggs, S P -- Yanofsky, M F -- Schmidt, R J -- New York, N.Y. -- Science. 1996 Nov 29;274(5292):1537-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. rschmidt@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8929416" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; DNA Transposable Elements ; DNA-Binding Proteins/chemistry/*genetics ; Gene Expression ; *Genes, Plant ; MADS Domain Proteins ; Microscopy, Electron, Scanning ; Molecular Sequence Data ; Morphogenesis ; Mutation ; Phenotype ; Plant Proteins/chemistry/*genetics ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Transcription Factors/*genetics ; Zea mays/*genetics/*growth & development/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-07-19
    Description: The gene ENOD40 is expressed during early stages of legume nodule development. A homolog was isolated from tobacco, which, as does ENOD40 from legumes, encodes an oligopeptide of about 10 amino acids. In tobacco protoplasts, these peptides change the response to auxin at concentrations as low as 10(-12) to 10(-16)M. The peptides encoded by ENOD40 appear to act as plant growth regulators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van de Sande, K -- Pawlowski, K -- Czaja, I -- Wieneke, U -- Schell, J -- Schmidt, J -- Walden, R -- Matvienko, M -- Wellink, J -- van Kammen, A -- Franssen, H -- Bisseling, T -- New York, N.Y. -- Science. 1996 Jul 19;273(5273):370-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Zuchtungsforschung, Koln, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662527" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Division ; Fabaceae/chemistry/*genetics/growth & development ; *Genes, Plant ; Green Fluorescent Proteins ; Indoleacetic Acids/*pharmacology ; Luminescent Proteins/biosynthesis ; Molecular Sequence Data ; Naphthaleneacetic Acids/pharmacology ; Open Reading Frames ; Plant Growth Regulators ; Plant Proteins/biosynthesis/*genetics/*physiology ; Plant Roots/growth & development/metabolism ; *Plants, Medicinal ; *Plants, Toxic ; Protoplasts/cytology ; RNA, Long Noncoding ; RNA, Untranslated/*physiology ; Recombinant Fusion Proteins ; Tobacco/chemistry/*genetics/growth & development ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-12-15
    Description: PIK3CA, one of the two most frequently mutated oncogenes in human tumors, codes for p110alpha, the catalytic subunit of a phosphatidylinositol 3-kinase, isoform alpha (PI3Kalpha, p110alpha/p85). Here, we report a 3.0 angstrom resolution structure of a complex between p110alpha and a polypeptide containing the p110alpha-binding domains of p85alpha, a protein required for its enzymatic activity. The structure shows that many of the mutations occur at residues lying at the interfaces between p110alpha and p85alpha or between the kinase domain of p110alpha and other domains within the catalytic subunit. Disruptions of these interactions are likely to affect the regulation of kinase activity by p85 or the catalytic activity of the enzyme, respectively. In addition to providing new insights about the structure of PI3Kalpha, these results suggest specific mechanisms for the effect of oncogenic mutations in p110alpha and p85alpha.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Chuan-Hsiang -- Mandelker, Diana -- Schmidt-Kittler, Oleg -- Samuels, Yardena -- Velculescu, Victor E -- Kinzler, Kenneth W -- Vogelstein, Bert -- Gabelli, Sandra B -- Amzel, L Mario -- CA 43460/CA/NCI NIH HHS/ -- GM 07184/GM/NIGMS NIH HHS/ -- GM066895/GM/NIGMS NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Dec 14;318(5857):1744-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18079394" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate ; Amino Acid Sequence ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Molecular Sequence Data ; *Mutation ; Neoplasms/*genetics ; Phosphatidylinositol 3-Kinases/*chemistry/genetics/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/genetics/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-06-06
    Description: All living organisms face a variety of environmental stresses that cause the misfolding and aggregation of proteins. To eliminate damaged proteins, cells developed highly efficient stress response and protein quality control systems. We performed a biochemical and structural analysis of the bacterial CtsR/McsB stress response. The crystal structure of the CtsR repressor, in complex with DNA, pinpointed key residues important for high-affinity binding to the promoter regions of heat-shock genes. Moreover, biochemical characterization of McsB revealed that McsB specifically phosphorylates arginine residues in the DNA binding domain of CtsR, thereby impairing its function as a repressor of stress response genes. Identification of the CtsR/McsB arginine phospho-switch expands the repertoire of possible protein modifications involved in prokaryotic and eukaryotic transcriptional regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fuhrmann, Jakob -- Schmidt, Andreas -- Spiess, Silvia -- Lehner, Anita -- Turgay, Kursad -- Mechtler, Karl -- Charpentier, Emmanuelle -- Clausen, Tim -- New York, N.Y. -- Science. 2009 Jun 5;324(5932):1323-7. doi: 10.1126/science.1170088.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19498169" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/metabolism ; Bacterial Proteins/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Crystallography, X-Ray ; DNA, Bacterial/metabolism ; Electrophoretic Mobility Shift Assay ; Gene Expression Regulation, Bacterial ; Geobacillus stearothermophilus/genetics/*metabolism ; Heat-Shock Response/*genetics ; Helix-Turn-Helix Motifs ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phosphorylation ; Promoter Regions, Genetic ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Repressor Proteins/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Tandem Mass Spectrometry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Description: Heute wird GPS (Global Positioning System) vor allem für die Positionsbestimmung genutzt. Aber es lässt sich noch mehr machen mit GPS: Das Satellitensignal wird zum Beispiel auch von Wasserflächen reflektiert. Dieses Signal lässt sich dazu nutzen,Meeres- und Wellenhöhen zu überwachen, zwei wichtige klimarelevante Faktoren.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...