ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (64)
  • 2010-2014  (64)
  • Chemistry and Pharmacology  (55)
  • Mathematics  (9)
Collection
  • Articles  (64)
Years
Year
Journal
  • 1
    Publication Date: 2010-03-20
    Description: The most distant quasars known, at redshifts z approximately 6, generally have properties indistinguishable from those of lower-redshift quasars in the rest-frame ultraviolet/optical and X-ray bands. This puzzling result suggests that these distant quasars are evolved objects even though the Universe was only seven per cent of its current age at these redshifts. Recently one z approximately 6 quasar was shown not to have any detectable emission from hot dust, but it was unclear whether that indicated different hot-dust properties at high redshift or if it is simply an outlier. Here we report the discovery of a second quasar without hot-dust emission in a sample of 21 z approximately 6 quasars. Such apparently hot-dust-free quasars have no counterparts at low redshift. Moreover, we demonstrate that the hot-dust abundance in the 21 quasars builds up in tandem with the growth of the central black hole, whereas at low redshift it is almost independent of the black hole mass. Thus z approximately 6 quasars are indeed at an early evolutionary stage, with rapid mass accretion and dust formation. The two hot-dust-free quasars are likely to be first-generation quasars born in dust-free environments and are too young to have formed a detectable amount of hot dust around them.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Linhua -- Fan, Xiaohui -- Brandt, W N -- Carilli, Chris L -- Egami, Eiichi -- Hines, Dean C -- Kurk, Jaron D -- Richards, Gordon T -- Shen, Yue -- Strauss, Michael A -- Vestergaard, Marianne -- Walter, Fabian -- England -- Nature. 2010 Mar 18;464(7287):380-3. doi: 10.1038/nature08877.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721, USA. ljiang@email.arizona.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20237563" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-09-28
    Description: Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic 'writers' and 'erasers'. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein-protein interactions of epigenetic 'readers', and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010259/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010259/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Filippakopoulos, Panagis -- Qi, Jun -- Picaud, Sarah -- Shen, Yao -- Smith, William B -- Fedorov, Oleg -- Morse, Elizabeth M -- Keates, Tracey -- Hickman, Tyler T -- Felletar, Ildiko -- Philpott, Martin -- Munro, Shonagh -- McKeown, Michael R -- Wang, Yuchuan -- Christie, Amanda L -- West, Nathan -- Cameron, Michael J -- Schwartz, Brian -- Heightman, Tom D -- La Thangue, Nicholas -- French, Christopher A -- Wiest, Olaf -- Kung, Andrew L -- Knapp, Stefan -- Bradner, James E -- 13058/Cancer Research UK/United Kingdom -- G0500905/Medical Research Council/United Kingdom -- G1000807/Medical Research Council/United Kingdom -- G9400953/Medical Research Council/United Kingdom -- K08 CA128972/CA/NCI NIH HHS/ -- K08 CA128972-03/CA/NCI NIH HHS/ -- T32-075762/PHS HHS/ -- Canadian Institutes of Health Research/Canada -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Dec 23;468(7327):1067-73. doi: 10.1038/nature09504. Epub 2010 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20871596" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Azirines/chemical synthesis/chemistry/*pharmacology ; Binding Sites ; Carcinoma, Squamous Cell/physiopathology ; Cell Differentiation/drug effects ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Chromatin/metabolism ; Dihydropyridines/chemical synthesis/chemistry/*pharmacology ; Female ; Humans ; Mice ; Mice, Nude ; *Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*antagonists & inhibitors/*metabolism ; Protein Binding/drug effects ; Protein Structure, Tertiary ; Recombinant Proteins/metabolism ; Sequence Alignment ; Skin Neoplasms/physiopathology ; Stereoisomerism ; Transcription Factors/*antagonists & inhibitors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-08-21
    Description: Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol and fatty acids with an odd number of carbon atoms. Deficiencies in PCC activity in humans are linked to the disease propionic acidaemia, an autosomal recessive disorder that can be fatal in infants. The holoenzyme of PCC is an alpha(6)beta(6) dodecamer, with a molecular mass of 750 kDa. The alpha-subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, whereas the beta-subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2-A resolution of a bacterial PCC alpha(6)beta(6) holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstruction at 15-A resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the alpha-subunits are arranged as monomers in the holoenzyme, decorating a central beta(6) hexamer. A hitherto unrecognized domain in the alpha-subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the beta-subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 A, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the beta-subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC and is relevant for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) and eukaryotic acetyl-CoA carboxylase (ACC).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925307/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925307/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Christine S -- Sadre-Bazzaz, Kianoush -- Shen, Yang -- Deng, Binbin -- Zhou, Z Hong -- Tong, Liang -- AI069015/AI/NIAID NIH HHS/ -- DK067238/DK/NIDDK NIH HHS/ -- GM071940/GM/NIGMS NIH HHS/ -- GM08281/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 AI069015/AI/NIAID NIH HHS/ -- R01 AI069015-04/AI/NIAID NIH HHS/ -- R01 DK067238/DK/NIDDK NIH HHS/ -- R01 DK067238-07/DK/NIDDK NIH HHS/ -- R01 GM071940/GM/NIGMS NIH HHS/ -- R01 GM071940-05/GM/NIGMS NIH HHS/ -- T32 GM008281/GM/NIGMS NIH HHS/ -- T32 GM008281-23/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Aug 19;466(7309):1001-5. doi: 10.1038/nature09302.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, New York 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725044" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl-CoA Carboxylase/chemistry/metabolism/ultrastructure ; Biocatalysis ; Biotin/metabolism ; Carbon-Nitrogen Ligases/chemistry/metabolism/ultrastructure ; Carrier Proteins/chemistry/metabolism/ultrastructure ; Catalytic Domain ; *Cryoelectron Microscopy ; Crystallography, X-Ray ; Fatty Acid Synthase, Type II ; Holoenzymes/*chemistry/genetics/metabolism/*ultrastructure ; Humans ; Methylmalonyl-CoA Decarboxylase/*chemistry/genetics/metabolism/*ultrastructure ; Models, Molecular ; Mutation/genetics ; Propionic Acidemia/enzymology/genetics ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Rhodobacteraceae/enzymology ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-04-02
    Description: Macroscopic polarization density, characteristic of ferroelectric phases, is stabilized by dipolar intermolecular interactions. These are weakened as materials become more fluid and of higher symmetry, limiting ferroelectricity to crystals and to smectic liquid crystal stackings of fluid layers. We report the SmAP(F), the smectic of fluid polar orthorhombic layers that order into a three-dimensional ferroelectric state, the highest-symmetry layered ferroelectric possible and the highest-symmetry ferroelectric material found to date. Its bent-core molecular design employs a single flexible tail that stabilizes layers with untilted molecules and in-plane polar ordering, evident in monolayer-thick freely suspended films. Electro-optic response reveals the three-dimensional orthorhombic ferroelectric structure, stabilized by silane molecular terminations that promote parallel alignment of the molecular dipoles in adjacent layers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reddy, R Amaranatha -- Zhu, Chenhui -- Shao, Renfan -- Korblova, Eva -- Gong, Tao -- Shen, Yongqiang -- Garcia, Edgardo -- Glaser, Matthew A -- Maclennan, Joseph E -- Walba, David M -- Clark, Noel A -- New York, N.Y. -- Science. 2011 Apr 1;332(6025):72-7. doi: 10.1126/science.1197248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, Liquid Crystal Materials Research Center, University of Colorado, Boulder, CO 80309-0215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454782" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-04-02
    Description: Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPsigma). Here we report that RPTPsigma acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Crystallographic analyses of a shared HSPG-CSPG binding site reveal a conformational plasticity that can accommodate diverse glycosaminoglycans with comparable affinities. Heparan sulfate and analogs induced RPTPsigma ectodomain oligomerization in solution, which was inhibited by chondroitin sulfate. RPTPsigma and HSPGs colocalize in puncta on sensory neurons in culture, whereas CSPGs occupy the extracellular matrix. These results lead to a model where proteoglycans can exert opposing effects on neuronal extension by competing to control the oligomerization of a common receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coles, Charlotte H -- Shen, Yingjie -- Tenney, Alan P -- Siebold, Christian -- Sutton, Geoffrey C -- Lu, Weixian -- Gallagher, John T -- Jones, E Yvonne -- Flanagan, John G -- Aricescu, A Radu -- 090532/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- EY11559/EY/NEI NIH HHS/ -- G0700232/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- HD29417/HD/NICHD NIH HHS/ -- R01 EY011559/EY/NEI NIH HHS/ -- R01 EY011559-19/EY/NEI NIH HHS/ -- R37 HD029417/HD/NICHD NIH HHS/ -- R37 HD029417-20/HD/NICHD NIH HHS/ -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):484-8. doi: 10.1126/science.1200840. Epub 2011 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454754" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axons/*physiology ; Binding Sites ; Cell Membrane/metabolism ; Cells, Cultured ; Chondroitin Sulfate Proteoglycans/chemistry/*metabolism ; Chondroitin Sulfates/chemistry/metabolism ; Crystallography, X-Ray ; Extracellular Matrix ; Ganglia, Spinal ; Glypicans/metabolism ; Growth Cones/metabolism ; Heparan Sulfate Proteoglycans/chemistry/*metabolism ; Heparitin Sulfate/analogs & derivatives/chemistry/metabolism ; Humans ; Mice ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Neurites/physiology ; Neurocan/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Receptor-Like Protein Tyrosine Phosphatases, Class 2/*chemistry/*metabolism ; Sensory Receptor Cells/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-11-19
    Description: The end-Permian mass extinction was the most severe biodiversity crisis in Earth history. To better constrain the timing, and ultimately the causes of this event, we collected a suite of geochronologic, isotopic, and biostratigraphic data on several well-preserved sedimentary sections in South China. High-precision U-Pb dating reveals that the extinction peak occurred just before 252.28 +/- 0.08 million years ago, after a decline of 2 per mil ( per thousand) in delta(13)C over 90,000 years, and coincided with a delta(13)C excursion of -5 per thousand that is estimated to have lasted 〈/=20,000 years. The extinction interval was less than 200,000 years and synchronous in marine and terrestrial realms; associated charcoal-rich and soot-bearing layers indicate widespread wildfires on land. A massive release of thermogenic carbon dioxide and/or methane may have caused the catastrophic extinction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Shu-zhong -- Crowley, James L -- Wang, Yue -- Bowring, Samuel A -- Erwin, Douglas H -- Sadler, Peter M -- Cao, Chang-qun -- Rothman, Daniel H -- Henderson, Charles M -- Ramezani, Jahandar -- Zhang, Hua -- Shen, Yanan -- Wang, Xiang-dong -- Wang, Wei -- Mu, Lin -- Li, Wen-zhong -- Tang, Yue-gang -- Liu, Xiao-lei -- Liu, Lu-jun -- Zeng, Yong -- Jiang, Yao-fa -- Jin, Yu-gan -- New York, N.Y. -- Science. 2011 Dec 9;334(6061):1367-72. doi: 10.1126/science.1213454. Epub 2011 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Nanjing 210008, China. szshen@nigpas.ac.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22096103" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Carbon Dioxide ; Carbon Isotopes ; China ; *Ecosystem ; *Extinction, Biological ; Fires ; *Fossils ; Geologic Sediments ; Invertebrates/classification ; Isotopes ; Lead ; Mass Spectrometry ; Methane ; Oceans and Seas ; Plants/classification ; Radioisotope Dilution Technique ; Radiometric Dating ; Seawater/chemistry ; Time ; Uranium ; Vertebrates/classification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-12-15
    Description: Although the gonad primarily functions in procreation, it also affects animal life span. Here, we show that removal of the Caenorhabditis elegans germ line triggers a switch in the regulatory state of the organism to promote longevity, co-opting components involved in larval developmental timing circuits. These components include the DAF-12 steroid receptor, which is involved in the larval stage two-to-stage three (L2-L3) transition and up-regulates members of the let-7 microRNA (miRNA) family. The miRNAs target an early larval nuclear factor lin-14 and akt-1/kinase, thereby stimulating DAF-16/FOXO signaling to extend life. Our studies suggest that metazoan life span is coupled to the gonad through elements of a developmental timer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909774/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909774/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Yidong -- Wollam, Joshua -- Magner, Daniel -- Karalay, Oezlem -- Antebi, Adam -- R01 AG027498/AG/NIA NIH HHS/ -- T32 GM008231/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 14;338(6113):1472-6. doi: 10.1126/science.1228967.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, D-50931 Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239738" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/genetics/growth & development/*physiology ; Caenorhabditis elegans Proteins/genetics/*physiology ; Forkhead Transcription Factors ; Gene Expression Regulation, Developmental ; Germ Cells/metabolism ; Gonads/*metabolism ; Larva/genetics/growth & development/physiology ; Longevity/genetics/*physiology ; MicroRNAs/genetics/*metabolism ; Nuclear Proteins/genetics/physiology ; Proto-Oncogene Proteins c-akt/genetics/physiology ; Receptors, Cytoplasmic and Nuclear/genetics/*physiology ; Receptors, Steroid/genetics/*physiology ; Signal Transduction ; Transcription Factors/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-23
    Description: Melanocortin receptor accessory proteins (MRAPs) modulate signaling of melanocortin receptors in vitro. To investigate the physiological role of brain-expressed melanocortin 2 receptor accessory protein 2 (MRAP2), we characterized mice with whole-body and brain-specific targeted deletion of Mrap2, both of which develop severe obesity at a young age. Mrap2 interacts directly with melanocortin 4 receptor (Mc4r), a protein previously implicated in mammalian obesity, and it enhances Mc4r-mediated generation of the second messenger cyclic adenosine monophosphate, suggesting that alterations in Mc4r signaling may be one mechanism underlying the association between Mrap2 disruption and obesity. In a study of humans with severe, early-onset obesity, we found four rare, potentially pathogenic genetic variants in MRAP2, suggesting that the gene may also contribute to body weight regulation in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788688/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788688/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asai, Masato -- Ramachandrappa, Shwetha -- Joachim, Maria -- Shen, Yuan -- Zhang, Rong -- Nuthalapati, Nikhil -- Ramanathan, Visali -- Strochlic, David E -- Ferket, Peter -- Linhart, Kirsten -- Ho, Caroline -- Novoselova, Tatiana V -- Garg, Sumedha -- Ridderstrale, Martin -- Marcus, Claude -- Hirschhorn, Joel N -- Keogh, Julia M -- O'Rahilly, Stephen -- Chan, Li F -- Clark, Adrian J -- Farooqi, I Sadaf -- Majzoub, Joseph A -- 098497/Wellcome Trust/United Kingdom -- G0802796/Medical Research Council/United Kingdom -- G0900554/Medical Research Council/United Kingdom -- G9824984/Medical Research Council/United Kingdom -- P30-HD18655/HD/NICHD NIH HHS/ -- R01 DK075787/DK/NIDDK NIH HHS/ -- R01DK075787/DK/NIDDK NIH HHS/ -- T32 DK007699/DK/NIDDK NIH HHS/ -- T32 MH020017/MH/NIMH NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Jul 19;341(6143):275-8. doi: 10.1126/science.1233000.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23869016" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Animals ; Body Mass Index ; Body Weight/*genetics ; Carrier Proteins/*genetics ; Child ; Child, Preschool ; Energy Metabolism/genetics ; Female ; Gene Deletion ; Humans ; Male ; Mice ; Mice, Knockout ; Obesity/*genetics/metabolism ; Receptor Activity-Modifying Proteins/genetics/*metabolism ; Receptor, Melanocortin, Type 4/genetics/*metabolism ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-07-20
    Description: Genotypic differences greatly influence susceptibility and resistance to disease. Understanding genotype-phenotype relationships requires that phenotypes be viewed as manifestations of network properties, rather than simply as the result of individual genomic variations. Genome sequencing efforts have identified numerous germline mutations, and large numbers of somatic genomic alterations, associated with a predisposition to cancer. However, it remains difficult to distinguish background, or 'passenger', cancer mutations from causal, or 'driver', mutations in these data sets. Human viruses intrinsically depend on their host cell during the course of infection and can elicit pathological phenotypes similar to those arising from mutations. Here we test the hypothesis that genomic variations and tumour viruses may cause cancer through related mechanisms, by systematically examining host interactome and transcriptome network perturbations caused by DNA tumour virus proteins. The resulting integrated viral perturbation data reflects rewiring of the host cell networks, and highlights pathways, such as Notch signalling and apoptosis, that go awry in cancer. We show that systematic analyses of host targets of viral proteins can identify cancer genes with a success rate on a par with their identification through functional genomics and large-scale cataloguing of tumour mutations. Together, these complementary approaches increase the specificity of cancer gene identification. Combining systems-level studies of pathogen-encoded gene products with genomic approaches will facilitate the prioritization of cancer-causing driver genes to advance the understanding of the genetic basis of human cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rozenblatt-Rosen, Orit -- Deo, Rahul C -- Padi, Megha -- Adelmant, Guillaume -- Calderwood, Michael A -- Rolland, Thomas -- Grace, Miranda -- Dricot, Amelie -- Askenazi, Manor -- Tavares, Maria -- Pevzner, Samuel J -- Abderazzaq, Fieda -- Byrdsong, Danielle -- Carvunis, Anne-Ruxandra -- Chen, Alyce A -- Cheng, Jingwei -- Correll, Mick -- Duarte, Melissa -- Fan, Changyu -- Feltkamp, Mariet C -- Ficarro, Scott B -- Franchi, Rachel -- Garg, Brijesh K -- Gulbahce, Natali -- Hao, Tong -- Holthaus, Amy M -- James, Robert -- Korkhin, Anna -- Litovchick, Larisa -- Mar, Jessica C -- Pak, Theodore R -- Rabello, Sabrina -- Rubio, Renee -- Shen, Yun -- Singh, Saurav -- Spangle, Jennifer M -- Tasan, Murat -- Wanamaker, Shelly -- Webber, James T -- Roecklein-Canfield, Jennifer -- Johannsen, Eric -- Barabasi, Albert-Laszlo -- Beroukhim, Rameen -- Kieff, Elliott -- Cusick, Michael E -- Hill, David E -- Munger, Karl -- Marto, Jarrod A -- Quackenbush, John -- Roth, Frederick P -- DeCaprio, James A -- Vidal, Marc -- F32 GM095284/GM/NIGMS NIH HHS/ -- F32GM095284/GM/NIGMS NIH HHS/ -- K08 CA122833/CA/NCI NIH HHS/ -- K08 HL098361/HL/NHLBI NIH HHS/ -- K08HL098361/HL/NHLBI NIH HHS/ -- K25 HG006031/HG/NHGRI NIH HHS/ -- K25HG006031/HG/NHGRI NIH HHS/ -- P01 CA050661/CA/NCI NIH HHS/ -- P01CA050661/CA/NCI NIH HHS/ -- P50 HG004233/HG/NHGRI NIH HHS/ -- P50HG004233/HG/NHGRI NIH HHS/ -- R01 CA047006/CA/NCI NIH HHS/ -- R01 CA063113/CA/NCI NIH HHS/ -- R01 CA066980/CA/NCI NIH HHS/ -- R01 CA081135/CA/NCI NIH HHS/ -- R01 CA085180/CA/NCI NIH HHS/ -- R01 CA093804/CA/NCI NIH HHS/ -- R01 CA131354/CA/NCI NIH HHS/ -- R01 HG001715/HG/NHGRI NIH HHS/ -- R01CA047006/CA/NCI NIH HHS/ -- R01CA063113/CA/NCI NIH HHS/ -- R01CA066980/CA/NCI NIH HHS/ -- R01CA081135/CA/NCI NIH HHS/ -- R01CA085180/CA/NCI NIH HHS/ -- R01CA093804/CA/NCI NIH HHS/ -- R01CA131354/CA/NCI NIH HHS/ -- R01HG001715/HG/NHGRI NIH HHS/ -- T32 HL007208/HL/NHLBI NIH HHS/ -- T32HL007208/HL/NHLBI NIH HHS/ -- U01 CA141583/CA/NCI NIH HHS/ -- U01CA141583/CA/NCI NIH HHS/ -- England -- Nature. 2012 Jul 26;487(7408):491-5. doi: 10.1038/nature11288.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis of Network Perturbations Center of Excellence in Genomic Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22810586" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics/metabolism/pathogenicity ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Genes, Neoplasm/*genetics ; Genome, Human/*genetics ; Herpesvirus 4, Human/genetics/metabolism/pathogenicity ; *Host-Pathogen Interactions/genetics ; Humans ; Neoplasms/*genetics/*metabolism/pathology ; Oncogenic Viruses/genetics/metabolism/*pathogenicity ; Open Reading Frames/genetics ; Papillomaviridae/genetics/metabolism/pathogenicity ; Polyomavirus/genetics/metabolism/pathogenicity ; Receptors, Notch/metabolism ; Signal Transduction ; Two-Hybrid System Techniques ; Viral Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-24
    Description: A novel H7N9 influenza A virus first detected in March 2013 has since caused more than 130 human infections in China, resulting in 40 deaths. Preliminary analyses suggest that the virus is a reassortant of H7, N9 and H9N2 avian influenza viruses, and carries some amino acids associated with mammalian receptor binding, raising concerns of a new pandemic. However, neither the source populations of the H7N9 outbreak lineage nor the conditions for its genesis are fully known. Using a combination of active surveillance, screening of virus archives, and evolutionary analyses, here we show that H7 viruses probably transferred from domestic duck to chicken populations in China on at least two independent occasions. We show that the H7 viruses subsequently reassorted with enzootic H9N2 viruses to generate the H7N9 outbreak lineage, and a related previously unrecognized H7N7 lineage. The H7N9 outbreak lineage has spread over a large geographic region and is prevalent in chickens at live poultry markets, which are thought to be the immediate source of human infections. Whether the H7N9 outbreak lineage has, or will, become enzootic in China and neighbouring regions requires further investigation. The discovery here of a related H7N7 influenza virus in chickens that has the ability to infect mammals experimentally, suggests that H7 viruses may pose threats beyond the current outbreak. The continuing prevalence of H7 viruses in poultry could lead to the generation of highly pathogenic variants and further sporadic human infections, with a continued risk of the virus acquiring human-to-human transmissibility.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3801098/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3801098/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, Tommy Tsan-Yuk -- Wang, Jia -- Shen, Yongyi -- Zhou, Boping -- Duan, Lian -- Cheung, Chung-Lam -- Ma, Chi -- Lycett, Samantha J -- Leung, Connie Yin-Hung -- Chen, Xinchun -- Li, Lifeng -- Hong, Wenshan -- Chai, Yujuan -- Zhou, Linlin -- Liang, Huyi -- Ou, Zhihua -- Liu, Yongmei -- Farooqui, Amber -- Kelvin, David J -- Poon, Leo L M -- Smith, David K -- Pybus, Oliver G -- Leung, Gabriel M -- Shu, Yuelong -- Webster, Robert G -- Webby, Richard J -- Peiris, Joseph S M -- Rambaut, Andrew -- Zhu, Huachen -- Guan, Yi -- 092807/Wellcome Trust/United Kingdom -- 095831/Wellcome Trust/United Kingdom -- 260864/European Research Council/International -- BB/E009670/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- HHSN266200700005C/AI/NIAID NIH HHS/ -- HSN266200700005C/PHS HHS/ -- England -- Nature. 2013 Oct 10;502(7470):241-4. doi: 10.1038/nature12515. Epub 2013 Aug 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou 515041, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23965623" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chickens ; China ; Ducks ; Genes, Viral/genetics ; Humans ; Influenza A Virus, H7N7 Subtype/classification/genetics ; Influenza A Virus, H9N2 Subtype/classification/genetics ; Influenza A virus/*classification/*genetics ; Influenza in Birds/transmission/virology ; Influenza, Human/transmission/*virology ; Molecular Sequence Data ; *Phylogeny ; Reassortant Viruses/classification/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...