ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-12-13
    Description: Author(s): A. Banerjee, P. Chaddah, S. Dash, Kranti Kumar, Archana Lakhani, X. Chen, and R. V. Ramanujan [Phys. Rev. B 84, 214420] Published Mon Dec 12, 2011
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-04-30
    Description: In sensory cortex regions, neurons are tuned to specific stimulus features. For example, in the visual cortex, many neurons fire predominantly in response to moving objects of a preferred orientation. However, the characteristics of the synaptic input that cortical neurons receive to generate their output firing pattern remain unclear. Here we report a novel approach for the visualization and functional mapping of sensory inputs to the dendrites of cortical neurons in vivo. By combining high-speed two-photon imaging with electrophysiological recordings, we identify local subthreshold calcium signals that correspond to orientation-specific synaptic inputs. We find that even inputs that share the same orientation preference are widely distributed throughout the dendritic tree. At the same time, inputs of different orientation preference are interspersed, so that adjacent dendritic segments are tuned to distinct orientations. Thus, orientation-tuned neurons can compute their characteristic firing pattern by integrating spatially distributed synaptic inputs coding for multiple stimulus orientations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jia, Hongbo -- Rochefort, Nathalie L -- Chen, Xiaowei -- Konnerth, Arthur -- England -- Nature. 2010 Apr 29;464(7293):1307-12. doi: 10.1038/nature08947.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroscience and Center for Integrated Protein Science, Technical University Munich, Biedersteinerstrasse 29, 80802 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20428163" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Calcium Signaling ; Dendrites/*physiology ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Sensory Receptor Cells/cytology/*physiology ; Synapses/metabolism ; Visual Cortex/*cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-03
    Description: The taste system is one of our fundamental senses, responsible for detecting and responding to sweet, bitter, umami, salty, and sour stimuli. In the tongue, the five basic tastes are mediated by separate classes of taste receptor cells each finely tuned to a single taste quality. We explored the logic of taste coding in the brain by examining how sweet, bitter, umami, and salty qualities are represented in the primary taste cortex of mice. We used in vivo two-photon calcium imaging to demonstrate topographic segregation in the functional architecture of the gustatory cortex. Each taste quality is represented in its own separate cortical field, revealing the existence of a gustotopic map in the brain. These results expose the basic logic for the central representation of taste.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523322/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523322/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Xiaoke -- Gabitto, Mariano -- Peng, Yueqing -- Ryba, Nicholas J P -- Zuker, Charles S -- Z01 DE000561-15/Intramural NIH HHS/ -- Z01 DE000561-16/Intramural NIH HHS/ -- ZIA DE000561-17/Intramural NIH HHS/ -- ZIA DE000561-18/Intramural NIH HHS/ -- ZIA DE000561-19/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1262-6. doi: 10.1126/science.1204076.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21885776" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways ; Animals ; *Brain Mapping ; Cerebral Cortex/cytology/*physiology ; Cycloheximide ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Imaging ; Neurons/*physiology ; Sodium Chloride ; Sodium Glutamate ; Sweetening Agents ; Taste/*physiology ; Taste Buds/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-12-22
    Description: The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers host immune responses such as the production of type I interferons. Cytosolic DNA induces interferons through the production of cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced interferon-beta in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and interferon-beta induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863629/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863629/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Lijun -- Wu, Jiaxi -- Du, Fenghe -- Chen, Xiang -- Chen, Zhijian J -- AI-093967/AI/NIAID NIH HHS/ -- R01 AI093967/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Feb 15;339(6121):786-91. doi: 10.1126/science.1232458. Epub 2012 Dec 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23258413" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Cell Line, Tumor ; Cyclic AMP/biosynthesis ; Cyclic GMP/biosynthesis ; Cytidine Triphosphate/metabolism ; Cytosol/enzymology/*immunology ; DNA/*immunology/metabolism ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Interferon Type I/*biosynthesis ; Interferon-beta/*biosynthesis ; Metabolic Networks and Pathways ; Mice ; Molecular Sequence Data ; Nucleotidyltransferases/genetics/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-06-05
    Description: How environmental cues regulate adult stem cell and cancer cell activity through surface receptors is poorly understood. Angiopoietin-like proteins (ANGPTLs), a family of seven secreted glycoproteins, are known to support the activity of haematopoietic stem cells (HSCs) in vitro and in vivo. ANGPTLs also have important roles in lipid metabolism, angiogenesis and inflammation, but were considered 'orphan ligands' because no receptors were identified. Here we show that the immune-inhibitory receptor human leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse orthologue paired immunoglobulin-like receptor (PIRB) are receptors for several ANGPTLs. LILRB2 and PIRB are expressed on human and mouse HSCs, respectively, and the binding of ANGPTLs to these receptors supported ex vivo expansion of HSCs. In mouse transplantation acute myeloid leukaemia models, a deficiency in intracellular signalling of PIRB resulted in increased differentiation of leukaemia cells, revealing that PIRB supports leukaemia development. Our study indicates an unexpected functional significance of classical immune-inhibitory receptors in maintenance of stemness of normal adult stem cells and in support of cancer development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367397/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367397/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Junke -- Umikawa, Masato -- Cui, Changhao -- Li, Jiyuan -- Chen, Xiaoli -- Zhang, Chaozheng -- Huynh, HoangDinh -- Kang, Xunlei -- Silvany, Robert -- Wan, Xuan -- Ye, Jingxiao -- Canto, Alberto Puig -- Chen, Shu-Hsia -- Wang, Huan-You -- Ward, E Sally -- Zhang, Cheng Cheng -- K01 CA 120099/CA/NCI NIH HHS/ -- K01 CA120099/CA/NCI NIH HHS/ -- K01 CA120099-03/CA/NCI NIH HHS/ -- K01 CA120099-04/CA/NCI NIH HHS/ -- K01 CA120099-05/CA/NCI NIH HHS/ -- K01 CA120099-06/CA/NCI NIH HHS/ -- R01 CA109322/CA/NCI NIH HHS/ -- R01 CA172268/CA/NCI NIH HHS/ -- England -- Nature. 2012 May 30;485(7400):656-60. doi: 10.1038/nature11095.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22660330" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cells, Cultured ; Disease Models, Animal ; Fetal Blood/cytology/metabolism ; HEK293 Cells ; Hematopoietic Stem Cells/*cytology/*metabolism ; Humans ; Leukemia/*metabolism/*pathology ; Membrane Glycoproteins/genetics/*metabolism ; Mice ; Myeloid-Lymphoid Leukemia Protein ; Receptors, Immunologic/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-21
    Description: The tumour necrosis factor (TNF) family is crucial for immune homeostasis, cell death and inflammation. These cytokines are recognized by members of the TNF receptor (TNFR) family of death receptors, including TNFR1 and TNFR2, and FAS and TNF-related apoptosis-inducing ligand (TRAIL) receptors. Death receptor signalling requires death-domain-mediated homotypic/heterotypic interactions between the receptor and its downstream adaptors, including TNFR1-associated death domain protein (TRADD) and FAS-associated death domain protein (FADD). Here we discover that death domains in several proteins, including TRADD, FADD, RIPK1 and TNFR1, were directly inactivated by NleB, an enteropathogenic Escherichia coli (EPEC) type III secretion system effector known to inhibit host nuclear factor-kappaB (NF-kappaB) signalling. NleB contained an unprecedented N-acetylglucosamine (GlcNAc) transferase activity that specifically modified a conserved arginine in these death domains (Arg 235 in the TRADD death domain). NleB GlcNAcylation (the addition of GlcNAc onto a protein side chain) of death domains blocked homotypic/heterotypic death domain interactions and assembly of the oligomeric TNFR1 complex, thereby disrupting TNF signalling in EPEC-infected cells, including NF-kappaB signalling, apoptosis and necroptosis. Type-III-delivered NleB also blocked FAS ligand and TRAIL-induced cell death by preventing formation of a FADD-mediated death-inducing signalling complex (DISC). The arginine GlcNAc transferase activity of NleB was required for bacterial colonization in the mouse model of EPEC infection. The mechanism of action of NleB represents a new model by which bacteria counteract host defences, and also a previously unappreciated post-translational modification.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Shan -- Zhang, Li -- Yao, Qing -- Li, Lin -- Dong, Na -- Rong, Jie -- Gao, Wenqing -- Ding, Xiaojun -- Sun, Liming -- Chen, Xing -- Chen, She -- Shao, Feng -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Sep 12;501(7466):242-6. doi: 10.1038/nature12436. Epub 2013 Aug 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Biological Sciences, China Agricultural University, Beijing 100094, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23955153" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Animals ; Antigens, CD95/metabolism ; Apoptosis ; Arginine/*metabolism ; Death Domain Receptor Signaling Adaptor Proteins/metabolism ; Disease Models, Animal ; Enteropathogenic Escherichia coli/*metabolism/pathogenicity ; Escherichia coli Infections/metabolism/microbiology/pathology ; Escherichia coli Proteins/*metabolism ; Fas-Associated Death Domain Protein/chemistry/metabolism ; HeLa Cells ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes/chemistry/metabolism ; N-Acetylglucosaminyltransferases/*metabolism ; NF-kappa B/metabolism ; Protein Biosynthesis ; Protein Structure, Tertiary ; Receptor-Interacting Protein Serine-Threonine Kinases/chemistry/metabolism ; Receptors, Tumor Necrosis Factor, Type I/chemistry/metabolism ; *Signal Transduction ; TNF Receptor-Associated Death Domain Protein/*chemistry/*metabolism ; TNF-Related Apoptosis-Inducing Ligand/metabolism ; Tumor Necrosis Factor-alpha/metabolism ; Virulence ; Virulence Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-12-23
    Description: Angelman syndrome is a severe neurodevelopmental disorder caused by deletion or mutation of the maternal allele of the ubiquitin protein ligase E3A (UBE3A). In neurons, the paternal allele of UBE3A is intact but epigenetically silenced, raising the possibility that Angelman syndrome could be treated by activating this silenced allele to restore functional UBE3A protein. Using an unbiased, high-content screen in primary cortical neurons from mice, we identify twelve topoisomerase I inhibitors and four topoisomerase II inhibitors that unsilence the paternal Ube3a allele. These drugs included topotecan, irinotecan, etoposide and dexrazoxane (ICRF-187). At nanomolar concentrations, topotecan upregulated catalytically active UBE3A in neurons from maternal Ube3a-null mice. Topotecan concomitantly downregulated expression of the Ube3a antisense transcript that overlaps the paternal copy of Ube3a. These results indicate that topotecan unsilences Ube3a in cis by reducing transcription of an imprinted antisense RNA. When administered in vivo, topotecan unsilenced the paternal Ube3a allele in several regions of the nervous system, including neurons in the hippocampus, neocortex, striatum, cerebellum and spinal cord. Paternal expression of Ube3a remained elevated in a subset of spinal cord neurons for at least 12 weeks after cessation of topotecan treatment, indicating that transient topoisomerase inhibition can have enduring effects on gene expression. Although potential off-target effects remain to be investigated, our findings suggest a therapeutic strategy for reactivating the functional but dormant allele of Ube3a in patients with Angelman syndrome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257422/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257422/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Hsien-Sung -- Allen, John A -- Mabb, Angela M -- King, Ian F -- Miriyala, Jayalakshmi -- Taylor-Blake, Bonnie -- Sciaky, Noah -- Dutton, J Walter Jr -- Lee, Hyeong-Min -- Chen, Xin -- Jin, Jian -- Bridges, Arlene S -- Zylka, Mark J -- Roth, Bryan L -- Philpot, Benjamin D -- 5F32NS067712/NS/NINDS NIH HHS/ -- 5P30NS045892/NS/NINDS NIH HHS/ -- HHSN-271-2008-00025-C/PHS HHS/ -- P30 HD003110/HD/NICHD NIH HHS/ -- P30 HD003110-45/HD/NICHD NIH HHS/ -- P30HD03110/HD/NICHD NIH HHS/ -- R01EY018323/EY/NEI NIH HHS/ -- R01MH093372/MH/NIMH NIH HHS/ -- R01NS060725/NS/NINDS NIH HHS/ -- R01NS067688/NS/NINDS NIH HHS/ -- T32 HD040127/HD/NICHD NIH HHS/ -- T32 HD040127-10/HD/NICHD NIH HHS/ -- T32HD040127-07/HD/NICHD NIH HHS/ -- England -- Nature. 2011 Dec 21;481(7380):185-9. doi: 10.1038/nature10726.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22190039" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Angelman Syndrome/drug therapy/genetics ; Animals ; Cells, Cultured ; Cerebral Cortex/cytology/drug effects/metabolism ; Drug Evaluation, Preclinical ; Fathers ; Female ; Gene Silencing/*drug effects ; Genomic Imprinting/drug effects/genetics ; Male ; Mice ; Mice, Inbred C57BL ; Mothers ; Neurons/*drug effects/*metabolism ; Small Molecule Libraries/administration & dosage/chemistry/pharmacology ; Topoisomerase Inhibitors/administration & ; dosage/analysis/pharmacokinetics/*pharmacology ; Topotecan/administration & dosage/pharmacokinetics/pharmacology ; Ubiquitin-Protein Ligases/deficiency/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-01-13
    Description: Retinoblastoma is an aggressive childhood cancer of the developing retina that is initiated by the biallelic loss of RB1. Tumours progress very quickly following RB1 inactivation but the underlying mechanism is not known. Here we show that the retinoblastoma genome is stable, but that multiple cancer pathways can be epigenetically deregulated. To identify the mutations that cooperate with RB1 loss, we performed whole-genome sequencing of retinoblastomas. The overall mutational rate was very low; RB1 was the only known cancer gene mutated. We then evaluated the role of RB1 in genome stability and considered non-genetic mechanisms of cancer pathway deregulation. For example, the proto-oncogene SYK is upregulated in retinoblastoma and is required for tumour cell survival. Targeting SYK with a small-molecule inhibitor induced retinoblastoma tumour cell death in vitro and in vivo. Thus, retinoblastomas may develop quickly as a result of the epigenetic deregulation of key cancer pathways as a direct or indirect result of RB1 loss.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289956/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289956/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jinghui -- Benavente, Claudia A -- McEvoy, Justina -- Flores-Otero, Jacqueline -- Ding, Li -- Chen, Xiang -- Ulyanov, Anatoly -- Wu, Gang -- Wilson, Matthew -- Wang, Jianmin -- Brennan, Rachel -- Rusch, Michael -- Manning, Amity L -- Ma, Jing -- Easton, John -- Shurtleff, Sheila -- Mullighan, Charles -- Pounds, Stanley -- Mukatira, Suraj -- Gupta, Pankaj -- Neale, Geoff -- Zhao, David -- Lu, Charles -- Fulton, Robert S -- Fulton, Lucinda L -- Hong, Xin -- Dooling, David J -- Ochoa, Kerri -- Naeve, Clayton -- Dyson, Nicholas J -- Mardis, Elaine R -- Bahrami, Armita -- Ellison, David -- Wilson, Richard K -- Downing, James R -- Dyer, Michael A -- CA21765/CA/NCI NIH HHS/ -- CA64402/CA/NCI NIH HHS/ -- EY014867/EY/NEI NIH HHS/ -- EY018599/EY/NEI NIH HHS/ -- GM81607/GM/NIGMS NIH HHS/ -- R01 CA155202/CA/NCI NIH HHS/ -- R01 EY014867/EY/NEI NIH HHS/ -- R01 EY014867-02/EY/NEI NIH HHS/ -- R01 EY018599/EY/NEI NIH HHS/ -- R01 EY018599-03/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jan 11;481(7381):329-34. doi: 10.1038/nature10733.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computational Biology and Bioinformatics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22237022" target="_blank"〉PubMed〈/a〉
    Keywords: Aneuploidy ; Animals ; Cell Death/drug effects ; Cell Line ; Cell Survival/drug effects ; Chromosomal Instability/genetics ; Epigenesis, Genetic/*genetics ; Gene Expression Regulation, Neoplastic ; Genes, Retinoblastoma/genetics ; *Genomics ; Humans ; Intracellular Signaling Peptides and Proteins/antagonists & ; inhibitors/genetics/metabolism ; Mice ; *Molecular Targeted Therapy ; Mutation/genetics ; Protein Kinase Inhibitors/*pharmacology/therapeutic use ; Protein-Tyrosine Kinases/antagonists & inhibitors/genetics/metabolism ; Retinoblastoma/*drug therapy/*genetics/pathology ; Retinoblastoma Protein/deficiency/genetics ; Sequence Analysis, DNA ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-04-27
    Description: Germinal centres support antibody affinity maturation and memory formation. Follicular T-helper cells promote proliferation and differentiation of antigen-specific B cells inside the follicle. A genetic deficiency in the inducible co-stimulator (ICOS), a classic CD28 family co-stimulatory molecule highly expressed by follicular T-helper cells, causes profound germinal centre defects, leading to the view that ICOS specifically co-stimulates the follicular T-helper cell differentiation program. Here we show that ICOS directly controls follicular recruitment of activated T-helper cells in mice. This effect is independent from ICOS ligand (ICOSL)-mediated co-stimulation provided by antigen-presenting dendritic cells or cognate B cells, and does not rely on Bcl6-mediated programming as an intermediate step. Instead, it requires ICOSL expression by follicular bystander B cells, which do not present cognate antigen to T-helper cells but collectively form an ICOS-engaging field. Dynamic imaging reveals ICOS engagement drives coordinated pseudopod formation and promotes persistent T-cell migration at the border between the T-cell zone and the B-cell follicle in vivo. When follicular bystander B cells cannot express ICOSL, otherwise competent T-helper cells fail to develop into follicular T-helper cells normally, and fail to promote optimal germinal centre responses. These results demonstrate a co-stimulation-independent function of ICOS, uncover a key role for bystander B cells in promoting the development of follicular T-helper cells, and reveal unsuspected sophistication in dynamic T-cell positioning in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Heping -- Li, Xuanying -- Liu, Dan -- Li, Jianfu -- Zhang, Xu -- Chen, Xin -- Hou, Shiyue -- Peng, Lixia -- Xu, Chenguang -- Liu, Wanli -- Zhang, Lianfeng -- Qi, Hai -- England -- Nature. 2013 Apr 25;496(7446):523-7. doi: 10.1038/nature12058.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23619696" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*immunology/metabolism ; Bystander Effect/*immunology ; *Cell Movement ; DNA-Binding Proteins/metabolism ; Genotype ; Germinal Center/*cytology/immunology ; Inducible T-Cell Co-Stimulator Ligand/metabolism ; Inducible T-Cell Co-Stimulator Protein/*metabolism ; Lymphocyte Activation ; Mice ; Pseudopodia/metabolism ; Receptors, CXCR5 ; T-Lymphocytes, Helper-Inducer/*cytology/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-12-04
    Description: Ionic protein-lipid interactions are critical for the structure and function of membrane receptors, ion channels, integrins and many other proteins. However, the regulatory mechanism of these interactions is largely unknown. Here we show that Ca(2+) can bind directly to anionic phospholipids and thus modulate membrane protein function. The activation of T-cell antigen receptor-CD3 complex (TCR), a key membrane receptor for adaptive immunity, is regulated by ionic interactions between positively charged CD3epsilon/zeta cytoplasmic domains (CD3(CD)) and negatively charged phospholipids in the plasma membrane. Crucial tyrosines are buried in the membrane and are largely protected from phosphorylation in resting T cells. It is not clear how CD3(CD) dissociates from the membrane in antigen-stimulated T cells. The antigen engagement of even a single TCR triggers a Ca(2+) influx and TCR-proximal Ca(2+) concentration is higher than the average cytosolic Ca(2+) concentration. Our biochemical, live-cell fluorescence resonance energy transfer and NMR experiments showed that an increase in Ca(2+) concentration induced the dissociation of CD3(CD) from the membrane and the solvent exposure of tyrosine residues. As a consequence, CD3 tyrosine phosphorylation was significantly enhanced by Ca(2+) influx. Moreover, when compared with wild-type cells, Ca(2+) channel-deficient T cells had substantially lower levels of CD3 phosphorylation after stimulation. The effect of Ca(2+) on facilitating CD3 phosphorylation is primarily due to the charge of this ion, as demonstrated by the fact that replacing Ca(2+) with the non-physiological ion Sr(2+) resulted in the same feedback effect. Finally, (31)P NMR spectroscopy showed that Ca(2+) bound to the phosphate group in anionic phospholipids at physiological concentrations, thus neutralizing the negative charge of phospholipids. Rather than initiating CD3 phosphorylation, this regulatory pathway of Ca(2+) has a positive feedback effect on amplifying and sustaining CD3 phosphorylation and should enhance T-cell sensitivity to foreign antigens. Our study thus provides a new regulatory mechanism of Ca(2+) to T-cell activation involving direct lipid manipulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Xiaoshan -- Bi, Yunchen -- Yang, Wei -- Guo, Xingdong -- Jiang, Yan -- Wan, Chanjuan -- Li, Lunyi -- Bai, Yibing -- Guo, Jun -- Wang, Yujuan -- Chen, Xiangjun -- Wu, Bo -- Sun, Hongbin -- Liu, Wanli -- Wang, Junfeng -- Xu, Chenqi -- England -- Nature. 2013 Jan 3;493(7430):111-5. doi: 10.1038/nature11699. Epub 2012 Dec 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23201688" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism/pharmacology ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Feedback, Physiological/drug effects ; Humans ; Jurkat Cells ; Lipid Bilayers/chemistry/metabolism ; *Lymphocyte Activation/drug effects ; Mice ; Phospholipids/*chemistry/*metabolism ; Phosphorylation/drug effects ; Receptor-CD3 Complex, Antigen, T-Cell/drug effects/immunology/*metabolism ; *Signal Transduction/drug effects ; Solvents/chemistry/metabolism ; Static Electricity ; T-Lymphocytes/drug effects/immunology/*metabolism ; Tyrosine/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...