ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-11-08
    Description: The embryonic pyruvate kinase M2 (PKM2) isoform is highly expressed in human cancer. In contrast to the established role of PKM2 in aerobic glycolysis or the Warburg effect, its non-metabolic functions remain elusive. Here we demonstrate, in human cancer cells, that epidermal growth factor receptor (EGFR) activation induces translocation of PKM2, but not PKM1, into the nucleus, where K433 of PKM2 binds to c-Src-phosphorylated Y333 of beta-catenin. This interaction is required for both proteins to be recruited to the CCND1 promoter, leading to HDAC3 removal from the promoter, histone H3 acetylation and cyclin D1 expression. PKM2-dependent beta-catenin transactivation is instrumental in EGFR-promoted tumour cell proliferation and brain tumour development. In addition, positive correlations have been identified between c-Src activity, beta-catenin Y333 phosphorylation and PKM2 nuclear accumulation in human glioblastoma specimens. Furthermore, levels of beta-catenin phosphorylation and nuclear PKM2 have been correlated with grades of glioma malignancy and prognosis. These findings reveal that EGF induces beta-catenin transactivation via a mechanism distinct from that induced by Wnt/Wingless and highlight the essential non-metabolic functions of PKM2 in EGFR-promoted beta-catenin transactivation, cell proliferation and tumorigenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235705/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235705/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Weiwei -- Xia, Yan -- Ji, Haitao -- Zheng, Yanhua -- Liang, Ji -- Huang, Wenhua -- Gao, Xiang -- Aldape, Kenneth -- Lu, Zhimin -- 5 P50 CA127001-03/CA/NCI NIH HHS/ -- 5R01CA109035/CA/NCI NIH HHS/ -- CA16672/CA/NCI NIH HHS/ -- R01 CA109035/CA/NCI NIH HHS/ -- R01 CA109035-05/CA/NCI NIH HHS/ -- England -- Nature. 2011 Dec 1;480(7375):118-22. doi: 10.1038/nature10598.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22056988" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Cyclin D1/metabolism ; *Gene Expression Regulation, Neoplastic ; HEK293 Cells ; Humans ; Mice ; NIH 3T3 Cells ; Neoplasms/physiopathology ; Nuclear Proteins/*metabolism ; Phosphorylation ; Protein Binding ; Protein Transport ; Protein-Tyrosine Kinases/metabolism ; Pyruvate Kinase/*metabolism ; Receptor, Epidermal Growth Factor/*metabolism ; beta Catenin/*metabolism ; src-Family Kinases
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-31
    Description: Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349233/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3349233/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garnett, Mathew J -- Edelman, Elena J -- Heidorn, Sonja J -- Greenman, Chris D -- Dastur, Anahita -- Lau, King Wai -- Greninger, Patricia -- Thompson, I Richard -- Luo, Xi -- Soares, Jorge -- Liu, Qingsong -- Iorio, Francesco -- Surdez, Didier -- Chen, Li -- Milano, Randy J -- Bignell, Graham R -- Tam, Ah T -- Davies, Helen -- Stevenson, Jesse A -- Barthorpe, Syd -- Lutz, Stephen R -- Kogera, Fiona -- Lawrence, Karl -- McLaren-Douglas, Anne -- Mitropoulos, Xeni -- Mironenko, Tatiana -- Thi, Helen -- Richardson, Laura -- Zhou, Wenjun -- Jewitt, Frances -- Zhang, Tinghu -- O'Brien, Patrick -- Boisvert, Jessica L -- Price, Stacey -- Hur, Wooyoung -- Yang, Wanjuan -- Deng, Xianming -- Butler, Adam -- Choi, Hwan Geun -- Chang, Jae Won -- Baselga, Jose -- Stamenkovic, Ivan -- Engelman, Jeffrey A -- Sharma, Sreenath V -- Delattre, Olivier -- Saez-Rodriguez, Julio -- Gray, Nathanael S -- Settleman, Jeffrey -- Futreal, P Andrew -- Haber, Daniel A -- Stratton, Michael R -- Ramaswamy, Sridhar -- McDermott, Ultan -- Benes, Cyril H -- 086357/Wellcome Trust/United Kingdom -- 1U54HG006097-01/HG/NHGRI NIH HHS/ -- P41GM079575-02/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 28;483(7391):570-5. doi: 10.1038/nature11005.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22460902" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cell Survival/drug effects ; Drug Resistance, Neoplasm/drug effects/*genetics ; *Drug Screening Assays, Antitumor ; Gene Expression Regulation, Neoplastic/genetics ; Genes, Neoplasm/*genetics ; Genetic Markers/*genetics ; Genome, Human/*genetics ; Genomics ; Humans ; Indoles/pharmacology ; Neoplasms/*drug therapy/*genetics/pathology ; Oncogene Proteins, Fusion/genetics ; Pharmacogenetics ; Phthalazines/pharmacology ; Piperazines/pharmacology ; Poly(ADP-ribose) Polymerase Inhibitors ; Proto-Oncogene Protein c-fli-1/genetics ; RNA-Binding Protein EWS/genetics ; Sarcoma, Ewing/drug therapy/genetics/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-19
    Description: The tyrosine phosphatase SHP2, encoded by PTPN11, is required for the survival, proliferation and differentiation of various cell types. Germline activating mutations in PTPN11 cause Noonan syndrome, whereas somatic PTPN11 mutations cause childhood myeloproliferative disease and contribute to some solid tumours. Recently, heterozygous inactivating mutations in PTPN11 were found in metachondromatosis, a rare inherited disorder featuring multiple exostoses, enchondromas, joint destruction and bony deformities. The detailed pathogenesis of this disorder has remained unclear. Here we use a conditional knockout (floxed) Ptpn11 allele (Ptpn11(fl)) and Cre recombinase transgenic mice to delete Ptpn11 specifically in monocytes, macrophages and osteoclasts (lysozyme M-Cre; LysMCre) or in cathepsin K (Ctsk)-expressing cells, previously thought to be osteoclasts. LysMCre;Ptpn11(fl/fl) mice had mild osteopetrosis. Notably, however, CtskCre;Ptpn11(fl/fl) mice developed features very similar to metachondromatosis. Lineage tracing revealed a novel population of CtskCre-expressing cells in the perichondrial groove of Ranvier that display markers and functional properties consistent with mesenchymal progenitors. Chondroid neoplasms arise from these cells and show decreased extracellular signal-regulated kinase (ERK) pathway activation, increased Indian hedgehog (Ihh) and parathyroid hormone-related protein (Pthrp, also known as Pthlh) expression and excessive proliferation. Shp2-deficient chondroprogenitors had decreased fibroblast growth factor-evoked ERK activation and enhanced Ihh and Pthrp expression, whereas fibroblast growth factor receptor (FGFR) or mitogen-activated protein kinase kinase (MEK) inhibitor treatment of chondroid cells increased Ihh and Pthrp expression. Importantly, smoothened inhibitor treatment ameliorated metachondromatosis features in CtskCre;Ptpn11(fl/fl) mice. Thus, in contrast to its pro-oncogenic role in haematopoietic and epithelial cells, Ptpn11 is a tumour suppressor in cartilage, acting through a FGFR/MEK/ERK-dependent pathway in a novel progenitor cell population to prevent excessive Ihh production.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148013/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148013/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Wentian -- Wang, Jianguo -- Moore, Douglas C -- Liang, Haipei -- Dooner, Mark -- Wu, Qian -- Terek, Richard -- Chen, Qian -- Ehrlich, Michael G -- Quesenberry, Peter J -- Neel, Benjamin G -- 8P20GM103468/GM/NIGMS NIH HHS/ -- NIH R21AR57156/AR/NIAMS NIH HHS/ -- P20 RR025179/RR/NCRR NIH HHS/ -- R21 AR057156/AR/NIAMS NIH HHS/ -- R37CA49152/CA/NCI NIH HHS/ -- England -- Nature. 2013 Jul 25;499(7459):491-5. doi: 10.1038/nature12396. Epub 2013 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, Rhode Island 02903, USA. wyang@lifespan.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23863940" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Neoplasms/drug therapy/genetics/*metabolism/*pathology ; Cartilage/metabolism/pathology ; Cathepsin K/deficiency/genetics/metabolism ; Cell Division ; Cell Lineage ; Chondromatosis/drug therapy/genetics/*metabolism/*pathology ; Exostoses, Multiple Hereditary/drug therapy/genetics/*metabolism/*pathology ; Fibroblast Growth Factors/metabolism ; Gene Deletion ; Gene Expression Regulation/drug effects ; Genes, Tumor Suppressor/physiology ; Hedgehog Proteins/antagonists & inhibitors/*metabolism ; MAP Kinase Signaling System ; Macrophages/metabolism ; Mesenchymal Stromal Cells/cytology/*metabolism ; Mice ; Mice, Knockout ; Mice, Transgenic ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Monocytes/metabolism ; Osteoclasts/metabolism ; Osteopetrosis/genetics/metabolism/pathology ; Parathyroid Hormone-Related Protein/metabolism ; Protein Tyrosine Phosphatase, Non-Receptor Type ; 11/*deficiency/genetics/metabolism ; *Signal Transduction/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-12-04
    Description: Ionic protein-lipid interactions are critical for the structure and function of membrane receptors, ion channels, integrins and many other proteins. However, the regulatory mechanism of these interactions is largely unknown. Here we show that Ca(2+) can bind directly to anionic phospholipids and thus modulate membrane protein function. The activation of T-cell antigen receptor-CD3 complex (TCR), a key membrane receptor for adaptive immunity, is regulated by ionic interactions between positively charged CD3epsilon/zeta cytoplasmic domains (CD3(CD)) and negatively charged phospholipids in the plasma membrane. Crucial tyrosines are buried in the membrane and are largely protected from phosphorylation in resting T cells. It is not clear how CD3(CD) dissociates from the membrane in antigen-stimulated T cells. The antigen engagement of even a single TCR triggers a Ca(2+) influx and TCR-proximal Ca(2+) concentration is higher than the average cytosolic Ca(2+) concentration. Our biochemical, live-cell fluorescence resonance energy transfer and NMR experiments showed that an increase in Ca(2+) concentration induced the dissociation of CD3(CD) from the membrane and the solvent exposure of tyrosine residues. As a consequence, CD3 tyrosine phosphorylation was significantly enhanced by Ca(2+) influx. Moreover, when compared with wild-type cells, Ca(2+) channel-deficient T cells had substantially lower levels of CD3 phosphorylation after stimulation. The effect of Ca(2+) on facilitating CD3 phosphorylation is primarily due to the charge of this ion, as demonstrated by the fact that replacing Ca(2+) with the non-physiological ion Sr(2+) resulted in the same feedback effect. Finally, (31)P NMR spectroscopy showed that Ca(2+) bound to the phosphate group in anionic phospholipids at physiological concentrations, thus neutralizing the negative charge of phospholipids. Rather than initiating CD3 phosphorylation, this regulatory pathway of Ca(2+) has a positive feedback effect on amplifying and sustaining CD3 phosphorylation and should enhance T-cell sensitivity to foreign antigens. Our study thus provides a new regulatory mechanism of Ca(2+) to T-cell activation involving direct lipid manipulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Xiaoshan -- Bi, Yunchen -- Yang, Wei -- Guo, Xingdong -- Jiang, Yan -- Wan, Chanjuan -- Li, Lunyi -- Bai, Yibing -- Guo, Jun -- Wang, Yujuan -- Chen, Xiangjun -- Wu, Bo -- Sun, Hongbin -- Liu, Wanli -- Wang, Junfeng -- Xu, Chenqi -- England -- Nature. 2013 Jan 3;493(7430):111-5. doi: 10.1038/nature11699. Epub 2012 Dec 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23201688" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism/pharmacology ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Feedback, Physiological/drug effects ; Humans ; Jurkat Cells ; Lipid Bilayers/chemistry/metabolism ; *Lymphocyte Activation/drug effects ; Mice ; Phospholipids/*chemistry/*metabolism ; Phosphorylation/drug effects ; Receptor-CD3 Complex, Antigen, T-Cell/drug effects/immunology/*metabolism ; *Signal Transduction/drug effects ; Solvents/chemistry/metabolism ; Static Electricity ; T-Lymphocytes/drug effects/immunology/*metabolism ; Tyrosine/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-06-26
    Description: The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase eta (Poleta), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Poleta at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Poleta acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Poleta orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Poleta missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Poleta in replicating through D loop and DNA fragile sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899710/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899710/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biertumpfel, Christian -- Zhao, Ye -- Kondo, Yuji -- Ramon-Maiques, Santiago -- Gregory, Mark -- Lee, Jae Young -- Masutani, Chikahide -- Lehmann, Alan R -- Hanaoka, Fumio -- Yang, Wei -- G0501450/Medical Research Council/United Kingdom -- Z01 DK036146-01/Intramural NIH HHS/ -- ZIA DK036146-03/Intramural NIH HHS/ -- ZIA DK036146-04/Intramural NIH HHS/ -- ZIA DK036146-05/Intramural NIH HHS/ -- England -- Nature. 2010 Jun 24;465(7301):1044-8. doi: 10.1038/nature09196.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, NIDDK, NIH, 9000 Rockville Pike, Building 5, Room B103, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577208" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/analogs & derivatives/metabolism ; Base Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Damage ; DNA-Directed DNA Polymerase/*chemistry/genetics/*metabolism ; Humans ; Kinetics ; Models, Molecular ; Mutation, Missense/genetics ; Pyrimidine Dimers/genetics/metabolism ; Structure-Activity Relationship ; Xeroderma Pigmentosum/enzymology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-03-23
    Description: The genome is extensively transcribed into long intergenic noncoding RNAs (lincRNAs), many of which are implicated in gene silencing. Potential roles of lincRNAs in gene activation are much less understood. Development and homeostasis require coordinate regulation of neighbouring genes through a process termed locus control. Some locus control elements and enhancers transcribe lincRNAs, hinting at possible roles in long-range control. In vertebrates, 39 Hox genes, encoding homeodomain transcription factors critical for positional identity, are clustered in four chromosomal loci; the Hox genes are expressed in nested anterior-posterior and proximal-distal patterns colinear with their genomic position from 3' to 5'of the cluster. Here we identify HOTTIP, a lincRNA transcribed from the 5' tip of the HOXA locus that coordinates the activation of several 5' HOXA genes in vivo. Chromosomal looping brings HOTTIP into close proximity to its target genes. HOTTIP RNA binds the adaptor protein WDR5 directly and targets WDR5/MLL complexes across HOXA, driving histone H3 lysine 4 trimethylation and gene transcription. Induced proximity is necessary and sufficient for HOTTIP RNA activation of its target genes. Thus, by serving as key intermediates that transmit information from higher order chromosomal looping into chromatin modifications, lincRNAs may organize chromatin domains to coordinate long-range gene activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670758/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670758/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Kevin C -- Yang, Yul W -- Liu, Bo -- Sanyal, Amartya -- Corces-Zimmerman, Ryan -- Chen, Yong -- Lajoie, Bryan R -- Protacio, Angeline -- Flynn, Ryan A -- Gupta, Rajnish A -- Wysocka, Joanna -- Lei, Ming -- Dekker, Job -- Helms, Jill A -- Chang, Howard Y -- HG003143/HG/NHGRI NIH HHS/ -- R01 HG003143/HG/NHGRI NIH HHS/ -- R01 HG003143-06/HG/NHGRI NIH HHS/ -- R01 HG003143-06S1/HG/NHGRI NIH HHS/ -- R01 HG003143-06S2/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Apr 7;472(7341):120-4. doi: 10.1038/nature09819. Epub 2011 Mar 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21423168" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; Chromatin/*genetics/metabolism ; DNA, Intergenic/genetics ; Embryo, Mammalian/metabolism ; Fibroblasts/metabolism ; Gene Expression Regulation, Developmental/*genetics ; Gene Knockdown Techniques ; Genes, Homeobox/*genetics ; Histone-Lysine N-Methyltransferase/metabolism ; Histones/chemistry/metabolism ; Humans ; Lysine/metabolism ; Methylation ; Mice ; Molecular Sequence Data ; Multigene Family/genetics ; Organ Specificity ; RNA, Untranslated/*genetics ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-07-23
    Description: Pluripotent stem cells can be induced from somatic cells, providing an unlimited cell resource, with potential for studying disease and use in regenerative medicine. However, genetic manipulation and technically challenging strategies such as nuclear transfer used in reprogramming limit their clinical applications. Here, we show that pluripotent stem cells can be generated from mouse somatic cells at a frequency up to 0.2% using a combination of seven small-molecule compounds. The chemically induced pluripotent stem cells resemble embryonic stem cells in terms of their gene expression profiles, epigenetic status, and potential for differentiation and germline transmission. By using small molecules, exogenous "master genes" are dispensable for cell fate reprogramming. This chemical reprogramming strategy has potential use in generating functional desirable cell types for clinical applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hou, Pingping -- Li, Yanqin -- Zhang, Xu -- Liu, Chun -- Guan, Jingyang -- Li, Honggang -- Zhao, Ting -- Ye, Junqing -- Yang, Weifeng -- Liu, Kang -- Ge, Jian -- Xu, Jun -- Zhang, Qiang -- Zhao, Yang -- Deng, Hongkui -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):651-4. doi: 10.1126/science.1239278. Epub 2013 Jul 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23868920" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cadherins/genetics ; Cell Engineering/*methods ; Cellular Reprogramming/*drug effects/genetics ; Epithelial-Mesenchymal Transition/drug effects/genetics ; Fibroblasts/cytology/*drug effects ; Gene Expression Profiling ; Green Fluorescent Proteins/genetics ; Induced Pluripotent Stem Cells/*cytology/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Inbred ICR ; Octamer Transcription Factor-3/genetics/metabolism ; Promoter Regions, Genetic/drug effects ; Small Molecule Libraries/chemistry/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...