ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice, Inbred C57BL  (165)
  • Nature Publishing Group (NPG)  (165)
  • Institute of Physics
  • National Academy of Sciences
  • 2010-2014  (165)
  • 1955-1959
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2012-09-21
    Description: The AP1 transcription factor Batf3 is required for homeostatic development of CD8alpha(+) classical dendritic cells that prime CD8 T-cell responses against intracellular pathogens. Here we identify an alternative, Batf3-independent pathway in mice for CD8alpha(+) dendritic cell development operating during infection with intracellular pathogens and mediated by the cytokines interleukin (IL)-12 and interferon-gamma. This alternative pathway results from molecular compensation for Batf3 provided by the related AP1 factors Batf, which also functions in T and B cells, and Batf2 induced by cytokines in response to infection. Reciprocally, physiological compensation between Batf and Batf3 also occurs in T cells for expression of IL-10 and CTLA4. Compensation among BATF factors is based on the shared capacity of their leucine zipper domains to interact with non-AP1 factors such as IRF4 and IRF8 to mediate cooperative gene activation. Conceivably, manipulating this alternative pathway of dendritic cell development could be of value in augmenting immune responses to vaccines.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482832/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482832/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tussiwand, Roxane -- Lee, Wan-Ling -- Murphy, Theresa L -- Mashayekhi, Mona -- KC, Wumesh -- Albring, Jorn C -- Satpathy, Ansuman T -- Rotondo, Jeffrey A -- Edelson, Brian T -- Kretzer, Nicole M -- Wu, Xiaodi -- Weiss, Leslie A -- Glasmacher, Elke -- Li, Peng -- Liao, Wei -- Behnke, Michael -- Lam, Samuel S K -- Aurthur, Cora T -- Leonard, Warren J -- Singh, Harinder -- Stallings, Christina L -- Sibley, L David -- Schreiber, Robert D -- Murphy, Kenneth M -- AI076427-02/AI/NIAID NIH HHS/ -- P30 CA91842/CA/NCI NIH HHS/ -- R01 AI036629/AI/NIAID NIH HHS/ -- R01 AI076427/AI/NIAID NIH HHS/ -- R01 CA043059/CA/NCI NIH HHS/ -- T32 AI007163/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Oct 25;490(7421):502-7. doi: 10.1038/nature11531. Epub 2012 Sep 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22992524" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; Antigens, CD/metabolism ; Antigens, CD8/immunology/metabolism ; Basic-Leucine Zipper Transcription ; Factors/chemistry/deficiency/genetics/*metabolism ; CD4-Positive T-Lymphocytes/cytology/immunology ; CTLA-4 Antigen/metabolism ; Cell Differentiation ; Cell Line, Tumor ; Cell Lineage ; Dendritic Cells/*cytology/immunology/*metabolism ; Female ; Fibrosarcoma/immunology/metabolism/pathology ; Gene Expression Regulation ; Integrin alpha Chains/metabolism ; Interferon Regulatory Factors/deficiency/genetics/*metabolism ; Interleukin-10/metabolism ; Interleukin-12/immunology/metabolism ; Leucine Zippers ; Male ; Mice ; Mice, Inbred C57BL ; Neoplasm Transplantation ; Oncogene Protein p65(gag-jun)/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Repressor Proteins/deficiency/genetics ; T-Lymphocytes, Helper-Inducer/cytology/immunology/metabolism ; Toxoplasma/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-16
    Description: Pancreatic ductal adenocarcinoma (PDA) remains a lethal malignancy despite much progress concerning its molecular characterization. PDA tumours harbour four signature somatic mutations in addition to numerous lower frequency genetic events of uncertain significance. Here we use Sleeping Beauty (SB) transposon-mediated insertional mutagenesis in a mouse model of pancreatic ductal preneoplasia to identify genes that cooperate with oncogenic Kras(G12D) to accelerate tumorigenesis and promote progression. Our screen revealed new candidate genes for PDA and confirmed the importance of many genes and pathways previously implicated in human PDA. The most commonly mutated gene was the X-linked deubiquitinase Usp9x, which was inactivated in over 50% of the tumours. Although previous work had attributed a pro-survival role to USP9X in human neoplasia, we found instead that loss of Usp9x enhances transformation and protects pancreatic cancer cells from anoikis. Clinically, low USP9X protein and messenger RNA expression in PDA correlates with poor survival after surgery, and USP9X levels are inversely associated with metastatic burden in advanced disease. Furthermore, chromatin modulation with trichostatin A or 5-aza-2'-deoxycytidine elevates USP9X expression in human PDA cell lines, indicating a clinical approach for certain patients. The conditional deletion of Usp9x cooperated with Kras(G12D) to accelerate pancreatic tumorigenesis in mice, validating their genetic interaction. We propose that USP9X is a major tumour suppressor gene with prognostic and therapeutic relevance in PDA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376394/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376394/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perez-Mancera, Pedro A -- Rust, Alistair G -- van der Weyden, Louise -- Kristiansen, Glen -- Li, Allen -- Sarver, Aaron L -- Silverstein, Kevin A T -- Grutzmann, Robert -- Aust, Daniela -- Rummele, Petra -- Knosel, Thomas -- Herd, Colin -- Stemple, Derek L -- Kettleborough, Ross -- Brosnan, Jacqueline A -- Li, Ang -- Morgan, Richard -- Knight, Spencer -- Yu, Jun -- Stegeman, Shane -- Collier, Lara S -- ten Hoeve, Jelle J -- de Ridder, Jeroen -- Klein, Alison P -- Goggins, Michael -- Hruban, Ralph H -- Chang, David K -- Biankin, Andrew V -- Grimmond, Sean M -- Australian Pancreatic Cancer Genome Initiative -- Wessels, Lodewyk F A -- Wood, Stephen A -- Iacobuzio-Donahue, Christine A -- Pilarsky, Christian -- Largaespada, David A -- Adams, David J -- Tuveson, David A -- 13031/Cancer Research UK/United Kingdom -- 2P50CA101955/CA/NCI NIH HHS/ -- CA106610/CA/NCI NIH HHS/ -- CA122183/CA/NCI NIH HHS/ -- CA128920/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- K01 CA122183/CA/NCI NIH HHS/ -- K01 CA122183-05/CA/NCI NIH HHS/ -- P50 CA101955/CA/NCI NIH HHS/ -- P50CA62924/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2012 Apr 29;486(7402):266-70. doi: 10.1038/nature11114.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Li Ka Shing Centre, Cambridge Research Institute, Cancer Research UK, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22699621" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anoikis/genetics ; Carcinoma, Pancreatic Ductal/*enzymology/genetics/pathology ; Cell Line, Tumor ; Disease Models, Animal ; Endopeptidases ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Humans ; Mice ; Mice, Inbred C57BL ; Pancreatic Neoplasms/*enzymology/genetics/pathology ; U937 Cells ; Ubiquitin Thiolesterase/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-12-14
    Description: The clinical efficacy and safety of a drug is determined by its activity profile across many proteins in the proteome. However, designing drugs with a specific multi-target profile is both complex and difficult. Therefore methods to design drugs rationally a priori against profiles of several proteins would have immense value in drug discovery. Here we describe a new approach for the automated design of ligands against profiles of multiple drug targets. The method is demonstrated by the evolution of an approved acetylcholinesterase inhibitor drug into brain-penetrable ligands with either specific polypharmacology or exquisite selectivity profiles for G-protein-coupled receptors. Overall, 800 ligand-target predictions of prospectively designed ligands were tested experimentally, of which 75% were confirmed to be correct. We also demonstrate target engagement in vivo. The approach can be a useful source of drug leads when multi-target profiles are required to achieve either selectivity over other drug targets or a desired polypharmacology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653568/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653568/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Besnard, Jeremy -- Ruda, Gian Filippo -- Setola, Vincent -- Abecassis, Keren -- Rodriguiz, Ramona M -- Huang, Xi-Ping -- Norval, Suzanne -- Sassano, Maria F -- Shin, Antony I -- Webster, Lauren A -- Simeons, Frederick R C -- Stojanovski, Laste -- Prat, Annik -- Seidah, Nabil G -- Constam, Daniel B -- Bickerton, G Richard -- Read, Kevin D -- Wetsel, William C -- Gilbert, Ian H -- Roth, Bryan L -- Hopkins, Andrew L -- 083481/Wellcome Trust/United Kingdom -- BB/FOF/PF/15/09/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/J010510/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- MH082441/MH/NIMH NIH HHS/ -- R01 DA017204/DA/NIDA NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- WT 083481/Wellcome Trust/United Kingdom -- England -- Nature. 2012 Dec 13;492(7428):215-20. doi: 10.1038/nature11691.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23235874" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Automation ; Drug Delivery Systems ; *Drug Design ; Female ; *Ligands ; Male ; Mice ; Mice, Inbred C57BL ; Models, Theoretical ; Pharmacological Phenomena ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-08-28
    Description: Cortical-feedback projections to primary sensory areas terminate most heavily in layer 1 (L1) of the neocortex, where they make synapses with tuft dendrites of pyramidal neurons. L1 input is thought to provide 'contextual' information, but the signals transmitted by L1 feedback remain uncharacterized. In the rodent somatosensory system, the spatially diffuse feedback projection from vibrissal motor cortex (vM1) to vibrissal somatosensory cortex (vS1, also known as the barrel cortex) may allow whisker touch to be interpreted in the context of whisker position to compute object location. When mice palpate objects with their whiskers to localize object features, whisker touch excites vS1 and later vM1 in a somatotopic manner. Here we use axonal calcium imaging to track activity in vM1--〉vS1 afferents in L1 of the barrel cortex while mice performed whisker-dependent object localization. Spatially intermingled individual axons represent whisker movements, touch and other behavioural features. In a subpopulation of axons, activity depends on object location and persists for seconds after touch. Neurons in the barrel cortex thus have information to integrate movements and touches of multiple whiskers over time, key components of object identification and navigation by active touch.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petreanu, Leopoldo -- Gutnisky, Diego A -- Huber, Daniel -- Xu, Ning-long -- O'Connor, Dan H -- Tian, Lin -- Looger, Loren -- Svoboda, Karel -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Sep 13;489(7415):299-303. doi: 10.1038/nature11321.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22922646" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism ; Calcium Signaling ; Feedback, Physiological ; Male ; Mice ; Mice, Inbred C57BL ; Motor Cortex/cytology/*physiology ; Motor Neurons/metabolism ; Movement/physiology ; *Neural Pathways ; Physical Stimulation ; Somatosensory Cortex/cytology/*physiology ; Touch/*physiology ; Vibrissae/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-22
    Description: Aberrant expression of microRNAs (miRNAs) and the enzymes that control their processing have been reported in multiple biological processes including primary and metastatic tumours, but the mechanisms governing this are not clearly understood. Here we show that TAp63, a p53 family member, suppresses tumorigenesis and metastasis, and coordinately regulates Dicer and miR-130b to suppress metastasis. Metastatic mouse and human tumours deficient in TAp63 express Dicer at very low levels, and we found that modulation of expression of Dicer and miR-130b markedly affected the metastatic potential of cells lacking TAp63. TAp63 binds to and transactivates the Dicer promoter, demonstrating direct transcriptional regulation of Dicer by TAp63. These data provide a novel understanding of the roles of TAp63 in tumour and metastasis suppression through the coordinate transcriptional regulation of Dicer and miR-130b and may have implications for the many processes regulated by miRNAs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055799/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055799/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Xiaohua -- Chakravarti, Deepavali -- Cho, Min Soon -- Liu, Lingzhi -- Gi, Young Jin -- Lin, Yu-Li -- Leung, Marco L -- El-Naggar, Adel -- Creighton, Chad J -- Suraokar, Milind B -- Wistuba, Ignacio -- Flores, Elsa R -- 01DE019765/DE/NIDCR NIH HHS/ -- CA16672/CA/NCI NIH HHS/ -- P30 CA016672-27/CA/NCI NIH HHS/ -- P50 CA070907/CA/NCI NIH HHS/ -- P50 CA070907-10/CA/NCI NIH HHS/ -- P50 CA091846/CA/NCI NIH HHS/ -- P50 CA091846-10/CA/NCI NIH HHS/ -- P50CA070907/CA/NCI NIH HHS/ -- P50CA091846/CA/NCI NIH HHS/ -- U01 DE019765/DE/NIDCR NIH HHS/ -- U01 DE019765-03/DE/NIDCR NIH HHS/ -- England -- Nature. 2010 Oct 21;467(7318):986-90. doi: 10.1038/nature09459.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20962848" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Aging ; Cell Line ; Cell Line, Tumor ; DEAD-box RNA Helicases/biosynthesis/deficiency/genetics/*metabolism ; Endoribonucleases/genetics/*metabolism ; Female ; *Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor/physiology ; Genomic Instability ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; MicroRNAs/*biosynthesis/genetics/metabolism ; Neoplasm Metastasis/*genetics ; Neoplasms/genetics/pathology/secretion ; Phosphoproteins/deficiency/genetics/*metabolism ; Promoter Regions, Genetic/genetics ; Ribonuclease III/biosynthesis/deficiency/genetics/*metabolism ; Trans-Activators/deficiency/genetics/*metabolism ; Transcription Factors ; Transcriptional Activation ; Tumor Suppressor Proteins/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-27
    Description: The 2009 H1N1 influenza pandemic showed the speed with which a novel respiratory virus can spread and the ability of a generally mild infection to induce severe morbidity and mortality in a subset of the population. Recent in vitro studies show that the interferon-inducible transmembrane (IFITM) protein family members potently restrict the replication of multiple pathogenic viruses. Both the magnitude and breadth of the IFITM proteins' in vitro effects suggest that they are critical for intrinsic resistance to such viruses, including influenza viruses. Using a knockout mouse model, we now test this hypothesis directly and find that IFITM3 is essential for defending the host against influenza A virus in vivo. Mice lacking Ifitm3 display fulminant viral pneumonia when challenged with a normally low-pathogenicity influenza virus, mirroring the destruction inflicted by the highly pathogenic 1918 'Spanish' influenza. Similar increased viral replication is seen in vitro, with protection rescued by the re-introduction of Ifitm3. To test the role of IFITM3 in human influenza virus infection, we assessed the IFITM3 alleles of individuals hospitalized with seasonal or pandemic influenza H1N1/09 viruses. We find that a statistically significant number of hospitalized subjects show enrichment for a minor IFITM3 allele (SNP rs12252-C) that alters a splice acceptor site, and functional assays show the minor CC genotype IFITM3 has reduced influenza virus restriction in vitro. Together these data reveal that the action of a single intrinsic immune effector, IFITM3, profoundly alters the course of influenza virus infection in mouse and humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648786/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648786/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Everitt, Aaron R -- Clare, Simon -- Pertel, Thomas -- John, Sinu P -- Wash, Rachael S -- Smith, Sarah E -- Chin, Christopher R -- Feeley, Eric M -- Sims, Jennifer S -- Adams, David J -- Wise, Helen M -- Kane, Leanne -- Goulding, David -- Digard, Paul -- Anttila, Verneri -- Baillie, J Kenneth -- Walsh, Tim S -- Hume, David A -- Palotie, Aarno -- Xue, Yali -- Colonna, Vincenza -- Tyler-Smith, Chris -- Dunning, Jake -- Gordon, Stephen B -- GenISIS Investigators -- MOSAIC Investigators -- Smyth, Rosalind L -- Openshaw, Peter J -- Dougan, Gordon -- Brass, Abraham L -- Kellam, Paul -- 090382/Wellcome Trust/United Kingdom -- 090382/Z/09/Z/Wellcome Trust/United Kingdom -- 090385/Z/09/Z/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 13031/Cancer Research UK/United Kingdom -- DHCS/04/G121/68/Department of Health/United Kingdom -- G0600371/Medical Research Council/United Kingdom -- G0600511/Medical Research Council/United Kingdom -- G0800767/Medical Research Council/United Kingdom -- G0800777/Medical Research Council/United Kingdom -- G0802752/Medical Research Council/United Kingdom -- G0901697/Medical Research Council/United Kingdom -- G1000758/Medical Research Council/United Kingdom -- MC_G1001212/Medical Research Council/United Kingdom -- MC_U122785833/Medical Research Council/United Kingdom -- P30 DK043351/DK/NIDDK NIH HHS/ -- R01 AI091786/AI/NIAID NIH HHS/ -- R01AI091786/AI/NIAID NIH HHS/ -- Chief Scientist Office/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2012 Mar 25;484(7395):519-23. doi: 10.1038/nature10921.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22446628" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Cytokines/immunology ; England/epidemiology ; Gene Deletion ; Humans ; Influenza A Virus, H1N1 Subtype/classification/growth & development/pathogenicity ; Influenza A Virus, H3N2 Subtype/classification/growth & development/pathogenicity ; Influenza A virus/classification/growth & development/*pathogenicity ; Influenza B virus/classification/growth & development/pathogenicity ; Influenza, Human/complications/epidemiology/mortality/virology ; Leukocytes/immunology ; Lung/pathology/virology ; Membrane Proteins/chemistry/deficiency/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Orthomyxoviridae Infections/complications/*mortality/pathology ; Pneumonia, Viral/etiology/pathology/prevention & control ; Polymorphism, Single Nucleotide/genetics ; RNA-Binding Proteins/chemistry/genetics/*metabolism ; Scotland/epidemiology ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-03-15
    Description: To maintain lifelong production of blood cells, haematopoietic stem cells (HSCs) are tightly regulated by inherent programs and extrinsic regulatory signals received from their microenvironmental niche. Long-term repopulating HSCs reside in several, perhaps overlapping, niches that produce regulatory molecules and signals necessary for homeostasis and for increased output after stress or injury. Despite considerable advances in the specific cellular or molecular mechanisms governing HSC-niche interactions, little is known about the regulatory function in the intact mammalian haematopoietic niche. Recently, we and others described a positive regulatory role for prostaglandin E2 (PGE2) on HSC function ex vivo. Here we show that inhibition of endogenous PGE2 by non-steroidal anti-inflammatory drug (NSAID) treatment in mice results in modest HSC egress from the bone marrow. Surprisingly, this was independent of the SDF-1-CXCR4 axis implicated in stem-cell migration. Stem and progenitor cells were found to have differing mechanisms of egress, with HSC transit to the periphery dependent on niche attenuation and reduction in the retentive molecule osteopontin. Haematopoietic grafts mobilized with NSAIDs had superior repopulating ability and long-term engraftment. Treatment of non-human primates and healthy human volunteers confirmed NSAID-mediated egress in other species. PGE2 receptor knockout mice demonstrated that progenitor expansion and stem/progenitor egress resulted from reduced E-prostanoid 4 (EP4) receptor signalling. These results not only uncover unique regulatory roles for EP4 signalling in HSC retention in the niche, but also define a rapidly translatable strategy to enhance transplantation therapeutically.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606692/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606692/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoggatt, Jonathan -- Mohammad, Khalid S -- Singh, Pratibha -- Hoggatt, Amber F -- Chitteti, Brahmananda R -- Speth, Jennifer M -- Hu, Peirong -- Poteat, Bradley A -- Stilger, Kayla N -- Ferraro, Francesca -- Silberstein, Lev -- Wong, Frankie K -- Farag, Sherif S -- Czader, Magdalena -- Milne, Ginger L -- Breyer, Richard M -- Serezani, Carlos H -- Scadden, David T -- Guise, Theresa A -- Srour, Edward F -- Pelus, Louis M -- CA069158/CA/NCI NIH HHS/ -- CA143057/CA/NCI NIH HHS/ -- DK07519/DK/NIDDK NIH HHS/ -- DK37097/DK/NIDDK NIH HHS/ -- HL07910/HL/NHLBI NIH HHS/ -- HL087735/HL/NHLBI NIH HHS/ -- HL096305/HL/NHLBI NIH HHS/ -- HL100402/HL/NHLBI NIH HHS/ -- P01 DK090948/DK/NIDDK NIH HHS/ -- P30 CA082709/CA/NCI NIH HHS/ -- R01 HL044851/HL/NHLBI NIH HHS/ -- R01 HL096305/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 Mar 21;495(7441):365-9. doi: 10.1038/nature11929. Epub 2013 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23485965" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Inflammatory Agents, Non-Steroidal/pharmacology ; Cell Count ; Cell Movement/physiology ; Cells, Cultured ; Dinoprostone/*metabolism ; Hematopoietic Stem Cell Mobilization ; Hematopoietic Stem Cells/*cytology/drug effects ; Heterocyclic Compounds/pharmacology ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Osteopontin/genetics ; Papio ; Receptors, Prostaglandin E, EP4 Subtype/genetics/metabolism ; Stem Cells/*cytology/drug effects ; Thiazines/pharmacology ; Thiazoles/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-21
    Description: The tumour necrosis factor (TNF) family is crucial for immune homeostasis, cell death and inflammation. These cytokines are recognized by members of the TNF receptor (TNFR) family of death receptors, including TNFR1 and TNFR2, and FAS and TNF-related apoptosis-inducing ligand (TRAIL) receptors. Death receptor signalling requires death-domain-mediated homotypic/heterotypic interactions between the receptor and its downstream adaptors, including TNFR1-associated death domain protein (TRADD) and FAS-associated death domain protein (FADD). Here we discover that death domains in several proteins, including TRADD, FADD, RIPK1 and TNFR1, were directly inactivated by NleB, an enteropathogenic Escherichia coli (EPEC) type III secretion system effector known to inhibit host nuclear factor-kappaB (NF-kappaB) signalling. NleB contained an unprecedented N-acetylglucosamine (GlcNAc) transferase activity that specifically modified a conserved arginine in these death domains (Arg 235 in the TRADD death domain). NleB GlcNAcylation (the addition of GlcNAc onto a protein side chain) of death domains blocked homotypic/heterotypic death domain interactions and assembly of the oligomeric TNFR1 complex, thereby disrupting TNF signalling in EPEC-infected cells, including NF-kappaB signalling, apoptosis and necroptosis. Type-III-delivered NleB also blocked FAS ligand and TRAIL-induced cell death by preventing formation of a FADD-mediated death-inducing signalling complex (DISC). The arginine GlcNAc transferase activity of NleB was required for bacterial colonization in the mouse model of EPEC infection. The mechanism of action of NleB represents a new model by which bacteria counteract host defences, and also a previously unappreciated post-translational modification.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Shan -- Zhang, Li -- Yao, Qing -- Li, Lin -- Dong, Na -- Rong, Jie -- Gao, Wenqing -- Ding, Xiaojun -- Sun, Liming -- Chen, Xing -- Chen, She -- Shao, Feng -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Sep 12;501(7466):242-6. doi: 10.1038/nature12436. Epub 2013 Aug 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Biological Sciences, China Agricultural University, Beijing 100094, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23955153" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Animals ; Antigens, CD95/metabolism ; Apoptosis ; Arginine/*metabolism ; Death Domain Receptor Signaling Adaptor Proteins/metabolism ; Disease Models, Animal ; Enteropathogenic Escherichia coli/*metabolism/pathogenicity ; Escherichia coli Infections/metabolism/microbiology/pathology ; Escherichia coli Proteins/*metabolism ; Fas-Associated Death Domain Protein/chemistry/metabolism ; HeLa Cells ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes/chemistry/metabolism ; N-Acetylglucosaminyltransferases/*metabolism ; NF-kappa B/metabolism ; Protein Biosynthesis ; Protein Structure, Tertiary ; Receptor-Interacting Protein Serine-Threonine Kinases/chemistry/metabolism ; Receptors, Tumor Necrosis Factor, Type I/chemistry/metabolism ; *Signal Transduction ; TNF Receptor-Associated Death Domain Protein/*chemistry/*metabolism ; TNF-Related Apoptosis-Inducing Ligand/metabolism ; Tumor Necrosis Factor-alpha/metabolism ; Virulence ; Virulence Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-03
    Description: There is a pressing need to develop alternatives to annual influenza vaccines and antiviral agents licensed for mitigating influenza infection. Previous studies reported that acute lung injury caused by chemical or microbial insults is secondary to the generation of host-derived, oxidized phospholipid that potently stimulates Toll-like receptor 4 (TLR4)-dependent inflammation. Subsequently, we reported that Tlr4(-/-) mice are highly refractory to influenza-induced lethality, and proposed that therapeutic antagonism of TLR4 signalling would protect against influenza-induced acute lung injury. Here we report that therapeutic administration of Eritoran (also known as E5564)-a potent, well-tolerated, synthetic TLR4 antagonist-blocks influenza-induced lethality in mice, as well as lung pathology, clinical symptoms, cytokine and oxidized phospholipid expression, and decreases viral titres. CD14 and TLR2 are also required for Eritoran-mediated protection, and CD14 directly binds Eritoran and inhibits ligand binding to MD2. Thus, Eritoran blockade of TLR signalling represents a novel therapeutic approach for inflammation associated with influenza, and possibly other infections.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725830/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3725830/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shirey, Kari Ann -- Lai, Wendy -- Scott, Alison J -- Lipsky, Michael -- Mistry, Pragnesh -- Pletneva, Lioubov M -- Karp, Christopher L -- McAlees, Jaclyn -- Gioannini, Theresa L -- Weiss, Jerrold -- Chen, Wilbur H -- Ernst, Robert K -- Rossignol, Daniel P -- Gusovsky, Fabian -- Blanco, Jorge C G -- Vogel, Stefanie N -- AI018797/AI/NIAID NIH HHS/ -- AI057575/AI/NIAID NIH HHS/ -- AI059372/AI/NIAID NIH HHS/ -- NCRR K12-RR-023250/PHS HHS/ -- R01 AI018797/AI/NIAID NIH HHS/ -- R01 AI057575/AI/NIAID NIH HHS/ -- R01 AI059372/AI/NIAID NIH HHS/ -- T32 AI007540/AI/NIAID NIH HHS/ -- England -- Nature. 2013 May 23;497(7450):498-502. doi: 10.1038/nature12118. Epub 2013 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23636320" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Lung Injury/complications/drug therapy/pathology/prevention & control ; Animals ; Antigens, CD14/metabolism ; Antiviral Agents/*pharmacology/therapeutic use ; Cytokines/genetics/immunology ; Disaccharides/metabolism/*pharmacology/*therapeutic use ; Female ; Influenza A Virus, H1N1 Subtype/*drug effects/*pathogenicity ; Ligands ; Lymphocyte Antigen 96/metabolism ; Mice ; Mice, Inbred C57BL ; Orthomyxoviridae Infections/*drug therapy/immunology/pathology/virology ; Sugar Phosphates/metabolism/*pharmacology/*therapeutic use ; Survival Analysis ; Time Factors ; Toll-Like Receptor 2/immunology/metabolism ; Toll-Like Receptor 4/*antagonists & inhibitors/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-14
    Description: Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline with ageing. Here we report that geriatric satellite cells are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and that this irreversibly affects their intrinsic regenerative and self-renewal capacities. In geriatric mice, resting satellite cells lose reversible quiescence by switching to an irreversible pre-senescence state, caused by derepression of p16(INK4a) (also called Cdkn2a). On injury, these cells fail to activate and expand, undergoing accelerated entry into a full senescence state (geroconversion), even in a youthful environment. p16(INK4a) silencing in geriatric satellite cells restores quiescence and muscle regenerative functions. Our results demonstrate that maintenance of quiescence in adult life depends on the active repression of senescence pathways. As p16(INK4a) is dysregulated in human geriatric satellite cells, these findings provide the basis for stem-cell rejuvenation in sarcopenic muscles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sousa-Victor, Pedro -- Gutarra, Susana -- Garcia-Prat, Laura -- Rodriguez-Ubreva, Javier -- Ortet, Laura -- Ruiz-Bonilla, Vanessa -- Jardi, Merce -- Ballestar, Esteban -- Gonzalez, Susana -- Serrano, Antonio L -- Perdiguero, Eusebio -- Munoz-Canoves, Pura -- England -- Nature. 2014 Feb 20;506(7488):316-21. doi: 10.1038/nature13013. Epub 2014 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2] Buck Institute for Research on Aging, Novato, California 94945, USA. ; 1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2]. ; Chromatin and Disease Group, Cancer Epigenetics and Biology Programme, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, E-08907 Barcelona, Spain. ; Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain. ; Stem Cell Aging Group, Centro Nacional de Investigaciones Cardiovasculares, E-28029 Madrid, Spain. ; 1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2] Institucio Catalana de Recerca i Estudis Avancats, E-08010 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24522534" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aging/*metabolism ; Animals ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16/deficiency/genetics/*metabolism ; E2F1 Transcription Factor/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Progeria/metabolism/pathology ; Regeneration ; Rejuvenation ; Retinoblastoma Protein/metabolism ; Satellite Cells, Skeletal Muscle/*cytology/*metabolism ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...