ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Carbonates/chemistry  (1)
  • *Exobiology  (1)
  • *Social Responsibility  (1)
  • American Association for the Advancement of Science (AAAS)  (3)
  • 2010-2014  (3)
  • 1990-1994
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (3)
Years
  • 2010-2014  (3)
  • 1990-1994
Year
  • 1
    Publication Date: 2010-06-05
    Description: Decades of speculation about a warmer, wetter Mars climate in the planet's first billion years postulate a denser CO2-rich atmosphere than at present. Such an atmosphere should have led to the formation of outcrops rich in carbonate minerals, for which evidence has been sparse. Using the Mars Exploration Rover Spirit, we have now identified outcrops rich in magnesium-iron carbonate (16 to 34 weight percent) in the Columbia Hills of Gusev crater. Its composition approximates the average composition of the carbonate globules in martian meteorite ALH 84001. The Gusev carbonate probably precipitated from carbonate-bearing solutions under hydrothermal conditions at near-neutral pH in association with volcanic activity during the Noachian era.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morris, Richard V -- Ruff, Steven W -- Gellert, Ralf -- Ming, Douglas W -- Arvidson, Raymond E -- Clark, Benton C -- Golden, D C -- Siebach, Kirsten -- Klingelhofer, Gostar -- Schroder, Christian -- Fleischer, Iris -- Yen, Albert S -- Squyres, Steven W -- New York, N.Y. -- Science. 2010 Jul 23;329(5990):421-4. doi: 10.1126/science.1189667. Epub 2010 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NASA Johnson Space Center, Houston, TX 77058, USA. richard.v.morris@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522738" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Carbon Dioxide ; *Carbonates/chemistry ; Climate ; Extraterrestrial Environment ; Ferrous Compounds ; Magnesium ; *Mars ; Meteoroids ; Spacecraft ; Temperature ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-10-05
    Description: All known human societies have maintained social order by enforcing compliance with social norms. The biological mechanisms underlying norm compliance are, however, hardly understood. We show that the right lateral prefrontal cortex (rLPFC) is involved in both voluntary and sanction-induced norm compliance. Both types of compliance could be changed by varying the neural excitability of this brain region with transcranial direct current stimulation, but they were affected in opposite ways, suggesting that the stimulated region plays a fundamentally different role in voluntary and sanction-based compliance. Brain stimulation had a particularly strong effect on compliance in the context of socially constituted sanctions, whereas it left beliefs about what the norm prescribes and about subjectively expected sanctions unaffected. Our findings suggest that rLPFC activity is a key biological prerequisite for an evolutionarily and socially important aspect of human behavior.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruff, C C -- Ugazio, G -- Fehr, E -- New York, N.Y. -- Science. 2013 Oct 25;342(6157):482-4. doi: 10.1126/science.1241399. Epub 2013 Oct 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Social and Neural Systems Research (SNS-Lab), Department of Economics, University of Zurich, Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24091703" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; *Deep Brain Stimulation ; Female ; Humans ; Male ; Prefrontal Cortex/*physiology ; *Social Change ; *Social Responsibility ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-25
    Description: Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe(+3)-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arvidson, R E -- Squyres, S W -- Bell, J F 3rd -- Catalano, J G -- Clark, B C -- Crumpler, L S -- de Souza, P A Jr -- Fairen, A G -- Farrand, W H -- Fox, V K -- Gellert, R -- Ghosh, A -- Golombek, M P -- Grotzinger, J P -- Guinness, E A -- Herkenhoff, K E -- Jolliff, B L -- Knoll, A H -- Li, R -- McLennan, S M -- Ming, D W -- Mittlefehldt, D W -- Moore, J M -- Morris, R V -- Murchie, S L -- Parker, T J -- Paulsen, G -- Rice, J W -- Ruff, S W -- Smith, M D -- Wolff, M J -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):1248097. doi: 10.1126/science.1248097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24458648" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria ; *Exobiology ; Extraterrestrial Environment/*chemistry ; Geologic Sediments ; Hydrogen-Ion Concentration ; *Mars ; Silicates/analysis/chemistry ; Spacecraft ; Sulfates/chemistry ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...