ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • *Water  (3)
  • American Association for the Advancement of Science (AAAS)  (3)
  • Elsevier
  • 2010-2014  (3)
  • 1990-1994
  • 1985-1989
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (3)
  • Elsevier
Years
Year
  • 1
    Publication Date: 2010-06-05
    Description: Decades of speculation about a warmer, wetter Mars climate in the planet's first billion years postulate a denser CO2-rich atmosphere than at present. Such an atmosphere should have led to the formation of outcrops rich in carbonate minerals, for which evidence has been sparse. Using the Mars Exploration Rover Spirit, we have now identified outcrops rich in magnesium-iron carbonate (16 to 34 weight percent) in the Columbia Hills of Gusev crater. Its composition approximates the average composition of the carbonate globules in martian meteorite ALH 84001. The Gusev carbonate probably precipitated from carbonate-bearing solutions under hydrothermal conditions at near-neutral pH in association with volcanic activity during the Noachian era.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morris, Richard V -- Ruff, Steven W -- Gellert, Ralf -- Ming, Douglas W -- Arvidson, Raymond E -- Clark, Benton C -- Golden, D C -- Siebach, Kirsten -- Klingelhofer, Gostar -- Schroder, Christian -- Fleischer, Iris -- Yen, Albert S -- Squyres, Steven W -- New York, N.Y. -- Science. 2010 Jul 23;329(5990):421-4. doi: 10.1126/science.1189667. Epub 2010 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NASA Johnson Space Center, Houston, TX 77058, USA. richard.v.morris@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522738" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Carbon Dioxide ; *Carbonates/chemistry ; Climate ; Extraterrestrial Environment ; Ferrous Compounds ; Magnesium ; *Mars ; Meteoroids ; Spacecraft ; Temperature ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-05
    Description: The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Arvidson, R E -- Bell, J F 3rd -- Calef, F 3rd -- Clark, B C -- Cohen, B A -- Crumpler, L A -- de Souza, P A Jr -- Farrand, W H -- Gellert, R -- Grant, J -- Herkenhoff, K E -- Hurowitz, J A -- Johnson, J R -- Jolliff, B L -- Knoll, A H -- Li, R -- McLennan, S M -- Ming, D W -- Mittlefehldt, D W -- Parker, T J -- Paulsen, G -- Rice, M S -- Ruff, S W -- Schroder, C -- Yen, A S -- Zacny, K -- New York, N.Y. -- Science. 2012 May 4;336(6081):570-6. doi: 10.1126/science.1220476.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Cornell University, Ithaca, NY 14853, USA. squyres@astro.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22556248" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium Sulfate ; Extraterrestrial Environment ; Geological Phenomena ; *Mars ; Meteoroids ; Silicates ; Spacecraft ; *Water ; Zinc
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-25
    Description: Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe(+3)-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arvidson, R E -- Squyres, S W -- Bell, J F 3rd -- Catalano, J G -- Clark, B C -- Crumpler, L S -- de Souza, P A Jr -- Fairen, A G -- Farrand, W H -- Fox, V K -- Gellert, R -- Ghosh, A -- Golombek, M P -- Grotzinger, J P -- Guinness, E A -- Herkenhoff, K E -- Jolliff, B L -- Knoll, A H -- Li, R -- McLennan, S M -- Ming, D W -- Mittlefehldt, D W -- Moore, J M -- Morris, R V -- Murchie, S L -- Parker, T J -- Paulsen, G -- Rice, J W -- Ruff, S W -- Smith, M D -- Wolff, M J -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):1248097. doi: 10.1126/science.1248097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24458648" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria ; *Exobiology ; Extraterrestrial Environment/*chemistry ; Geologic Sediments ; Hydrogen-Ion Concentration ; *Mars ; Silicates/analysis/chemistry ; Spacecraft ; Sulfates/chemistry ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...