ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (21)
  • Male  (17)
  • Signal Transduction  (6)
  • Nature Publishing Group (NPG)  (15)
  • American Association for the Advancement of Science (AAAS)  (6)
  • American Geophysical Union (AGU)
  • National Academy of Sciences
  • 2015-2019  (21)
Collection
  • Articles  (21)
Publisher
  • Nature Publishing Group (NPG)  (15)
  • American Association for the Advancement of Science (AAAS)  (6)
  • American Geophysical Union (AGU)
  • National Academy of Sciences
Years
Year
  • 1
    Publication Date: 2015-08-11
    Description: The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene Slc39a12 as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter ZIP12. Here we report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This new and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Lan -- Oliver, Eduardo -- Maratou, Klio -- Atanur, Santosh S -- Dubois, Olivier D -- Cotroneo, Emanuele -- Chen, Chien-Nien -- Wang, Lei -- Arce, Cristina -- Chabosseau, Pauline L -- Ponsa-Cobas, Joan -- Frid, Maria G -- Moyon, Benjamin -- Webster, Zoe -- Aldashev, Almaz -- Ferrer, Jorge -- Rutter, Guy A -- Stenmark, Kurt R -- Aitman, Timothy J -- Wilkins, Martin R -- 098424/Wellcome Trust/United Kingdom -- 101033/Wellcome Trust/United Kingdom -- MR/J0003042/1/Medical Research Council/United Kingdom -- P01 HL014985/HL/NHLBI NIH HHS/ -- PG/04/035/16912/British Heart Foundation/United Kingdom -- PG/10/59/28478/British Heart Foundation/United Kingdom -- PG/12/61/29818/British Heart Foundation/United Kingdom -- PG/2000137/British Heart Foundation/United Kingdom -- PG/95170/British Heart Foundation/United Kingdom -- PG/98018/British Heart Foundation/United Kingdom -- RG/10/16/28575/British Heart Foundation/United Kingdom -- WT098424AIA/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Aug 20;524(7565):356-60. doi: 10.1038/nature14620. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. ; Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK. ; Section of Epigenomics and Disease, Department of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. ; Department of Pediatrics and Medicine, Division of Critical Care Medicine and Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Denver, Colorado 80045, USA. ; Transgenics and Embryonic Stem Cell Laboratory, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK. ; Institute of Molecular Biology and Medicine, 3 Togolok Moldo Street, Bishkek 720040, Kyrgyzstan. ; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258299" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Congenic ; Anoxia/genetics/*metabolism ; Arterioles/metabolism ; Cation Transport Proteins/deficiency/genetics/*metabolism ; Cattle ; Cell Hypoxia ; Cell Proliferation ; Cells, Cultured ; Chromosomes, Mammalian/genetics ; Chronic Disease ; Female ; Gene Knockdown Techniques ; Homeostasis ; Humans ; Hypertension, Pulmonary/genetics/*metabolism ; Intracellular Space/metabolism ; Male ; Muscle, Smooth, Vascular/cytology/*metabolism ; Rats ; Rats, Inbred F344 ; Rats, Inbred WKY ; Zinc/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-06-02
    Description: Understanding the diversity of human tissues is fundamental to disease and requires linking genetic information, which is identical in most of an individual's cells, with epigenetic mechanisms that could have tissue-specific roles. Surveys of DNA methylation in human tissues have established a complex landscape including both tissue-specific and invariant methylation patterns. Here we report high coverage methylomes that catalogue cytosine methylation in all contexts for the major human organ systems, integrated with matched transcriptomes and genomic sequence. By combining these diverse data types with each individuals' phased genome, we identified widespread tissue-specific differential CG methylation (mCG), partially methylated domains, allele-specific methylation and transcription, and the unexpected presence of non-CG methylation (mCH) in almost all human tissues. mCH correlated with tissue-specific functions, and using this mark, we made novel predictions of genes that escape X-chromosome inactivation in specific tissues. Overall, DNA methylation in several genomic contexts varies substantially among human tissues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schultz, Matthew D -- He, Yupeng -- Whitaker, John W -- Hariharan, Manoj -- Mukamel, Eran A -- Leung, Danny -- Rajagopal, Nisha -- Nery, Joseph R -- Urich, Mark A -- Chen, Huaming -- Lin, Shin -- Lin, Yiing -- Jung, Inkyung -- Schmitt, Anthony D -- Selvaraj, Siddarth -- Ren, Bing -- Sejnowski, Terrence J -- Wang, Wei -- Ecker, Joseph R -- F32 HL110473/HL/NHLBI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- K99 HL119617/HL/NHLBI NIH HHS/ -- K99 NS080911/NS/NINDS NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- R00 NS080911/NS/NINDS NIH HHS/ -- R00NS080911/NS/NINDS NIH HHS/ -- R01 ES024984/ES/NIEHS NIH HHS/ -- T32 GM008666/GM/NIGMS NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 9;523(7559):212-6. doi: 10.1038/nature14465. Epub 2015 Jun 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA [2] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA. ; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Department of Cognitive Science, University of California, San Diego, La Jolla, California 92037, USA. ; Ludwig Institute for Cancer Research, La Jolla, California 92093, USA. ; Department of Genetics, Stanford University, 300 Pasteur Drive, M-344 Stanford, California 94305, USA. ; Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, St Louis, Missouri 63110, USA. ; Bioinformatics Program, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Ludwig Institute for Cancer Research, La Jolla, California 92093, USA [2] University of California, San Diego School of Medicine, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, La Jolla, California 92093, USA. ; 1] Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Division of Biological Sciences, University of California at San Diego, La Jolla, California 92037, USA [3] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA. ; 1] Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA [2] Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26030523" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Alleles ; Chromosome Mapping ; *DNA Methylation ; *Epigenesis, Genetic ; Female ; Gene Expression Profiling ; Gene Expression Regulation ; Genetic Variation ; Humans ; Male ; Organ Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-05
    Description: Anxiety-related conditions are among the most difficult neuropsychiatric diseases to treat pharmacologically, but respond to cognitive therapies. There has therefore been interest in identifying relevant top-down pathways from cognitive control regions in medial prefrontal cortex (mPFC). Identification of such pathways could contribute to our understanding of the cognitive regulation of affect, and provide pathways for intervention. Previous studies have suggested that dorsal and ventral mPFC subregions exert opposing effects on fear, as do subregions of other structures. However, precise causal targets for top-down connections among these diverse possibilities have not been established. Here we show that the basomedial amygdala (BMA) represents the major target of ventral mPFC in amygdala in mice. Moreover, BMA neurons differentiate safe and aversive environments, and BMA activation decreases fear-related freezing and high-anxiety states. Lastly, we show that the ventral mPFC-BMA projection implements top-down control of anxiety state and learned freezing, both at baseline and in stress-induced anxiety, defining a broadly relevant new top-down behavioural regulation pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adhikari, Avishek -- Lerner, Talia N -- Finkelstein, Joel -- Pak, Sally -- Jennings, Joshua H -- Davidson, Thomas J -- Ferenczi, Emily -- Gunaydin, Lisa A -- Mirzabekov, Julie J -- Ye, Li -- Kim, Sung-Yon -- Lei, Anna -- Deisseroth, Karl -- 1F32MH105053-01/MH/NIMH NIH HHS/ -- K99 MH106649/MH/NIMH NIH HHS/ -- K99MH106649/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Nov 12;527(7577):179-85. doi: 10.1038/nature15698. Epub 2015 Nov 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, California 94305, USA. ; CNC Program, Stanford University, Stanford, California 94304, USA. ; Neurosciences Program, Stanford University, Stanford, California 94305, USA. ; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305, USA. ; Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536109" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/cytology/*physiology ; Animals ; Anxiety/*physiopathology/psychology ; Extinction, Psychological/physiology ; Fear/*physiology/psychology ; Female ; Freezing Reaction, Cataleptic/physiology ; Learning/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Neural Pathways/*physiology ; Prefrontal Cortex/cytology/physiology ; Stress, Psychological/physiopathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-10
    Description: At least 120 non-olfactory G-protein-coupled receptors in the human genome are 'orphans' for which endogenous ligands are unknown, and many have no selective ligands, hindering the determination of their biological functions and clinical relevance. Among these is GPR68, a proton receptor that lacks small molecule modulators for probing its biology. Using yeast-based screens against GPR68, here we identify the benzodiazepine drug lorazepam as a non-selective GPR68 positive allosteric modulator. More than 3,000 GPR68 homology models were refined to recognize lorazepam in a putative allosteric site. Docking 3.1 million molecules predicted new GPR68 modulators, many of which were confirmed in functional assays. One potent GPR68 modulator, ogerin, suppressed recall in fear conditioning in wild-type but not in GPR68-knockout mice. The same approach led to the discovery of allosteric agonists and negative allosteric modulators for GPR65. Combining physical and structure-based screening may be broadly useful for ligand discovery for understudied and orphan GPCRs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Xi-Ping -- Karpiak, Joel -- Kroeze, Wesley K -- Zhu, Hu -- Chen, Xin -- Moy, Sheryl S -- Saddoris, Kara A -- Nikolova, Viktoriya D -- Farrell, Martilias S -- Wang, Sheng -- Mangano, Thomas J -- Deshpande, Deepak A -- Jiang, Alice -- Penn, Raymond B -- Jin, Jian -- Koller, Beverly H -- Kenakin, Terry -- Shoichet, Brian K -- Roth, Bryan L -- GM59957/GM/NIGMS NIH HHS/ -- GM71896/GM/NIGMS NIH HHS/ -- P01 HL114471/HL/NHLBI NIH HHS/ -- R01 DA017204/DA/NIDA NIH HHS/ -- R01 DA027170/DA/NIDA NIH HHS/ -- U01 MH104974/MH/NIMH NIH HHS/ -- U19MH082441/MH/NIMH NIH HHS/ -- U54 HD079124/HD/NICHD NIH HHS/ -- England -- Nature. 2015 Nov 26;527(7579):477-83. doi: 10.1038/nature15699. Epub 2015 Nov 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7365, USA. ; National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, USA. ; Department of Pharmaceutical Chemistry, University of California at San Francisco, Byers Hall, 1700 4th Street, San Francisco, California 94158-2550, USA. ; Center for Integrative Chemical Biology and Drug Discovery (CICBDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7363, USA. ; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, USA. ; Department of Psychiatry and Carolina Institute for Developmental Disabilities (CIDD), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7146, USA. ; Center for Translational Medicine and Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA. ; Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7264, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26550826" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/drug effects ; Allosteric Site ; Animals ; Anti-Anxiety Agents/analysis/chemistry/metabolism/pharmacology ; Benzyl Alcohols/analysis/*chemistry/metabolism/*pharmacology ; Conditioning, Classical ; *Drug Discovery ; Fear ; Female ; HEK293 Cells ; Humans ; Ligands ; Lorazepam/analysis/*chemistry/metabolism/*pharmacology ; Male ; Memory/drug effects ; Mice ; Mice, Knockout ; Models, Molecular ; Receptors, G-Protein-Coupled/agonists/antagonists & ; inhibitors/chemistry/deficiency/*metabolism ; Signal Transduction/drug effects ; Triazines/analysis/*chemistry/metabolism/*pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-09
    Description: Transcriptional regulation and posttranscriptional processing underlie many cellular and organismal phenotypes. We used RNA sequence data generated by Genotype-Tissue Expression (GTEx) project to investigate the patterns of transcriptome variation across individuals and tissues. Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples. These signatures are dominated by a relatively small number of genes-which is most clearly seen in blood-though few are exclusive to a particular tissue and vary more across tissues than individuals. Genes exhibiting high interindividual expression variation include disease candidates associated with sex, ethnicity, and age. Primary transcription is the major driver of cellular specificity, with splicing playing mostly a complementary role; except for the brain, which exhibits a more divergent splicing program. Variation in splicing, despite its stochasticity, may play in contrast a comparatively greater role in defining individual phenotypes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547472/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547472/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mele, Marta -- Ferreira, Pedro G -- Reverter, Ferran -- DeLuca, David S -- Monlong, Jean -- Sammeth, Michael -- Young, Taylor R -- Goldmann, Jakob M -- Pervouchine, Dmitri D -- Sullivan, Timothy J -- Johnson, Rory -- Segre, Ayellet V -- Djebali, Sarah -- Niarchou, Anastasia -- GTEx Consortium -- Wright, Fred A -- Lappalainen, Tuuli -- Calvo, Miquel -- Getz, Gad -- Dermitzakis, Emmanouil T -- Ardlie, Kristin G -- Guigo, Roderic -- HHSN261200800001E/PHS HHS/ -- HHSN268201000029C/HL/NHLBI NIH HHS/ -- HHSN268201000029C/PHS HHS/ -- R01 DA006227-17/DA/NIDA NIH HHS/ -- R01 MH090936/MH/NIMH NIH HHS/ -- R01 MH090941/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2015 May 8;348(6235):660-5. doi: 10.1126/science.aaa0355.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Harvard Department of stem cell and regenerative biology, Harvard University, Cambridge, MA, USA. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. McGill University, Montreal, Canada. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. National Institute for Scientific Computing (LNCC), Petropolis, Rio de Janeiro, Brazil. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. Radboud University, Nijmegen, Netherlands. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskie Gory 1-73, 119992 Moscow, Russia. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. ; Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Harvard Department of stem cell and regenerative biology, Harvard University, Cambridge, MA, USA. Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland. Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. Broad Institute of MIT and Harvard, Cambridge, MA, USA. McGill University, Montreal, Canada. National Institute for Scientific Computing (LNCC), Petropolis, Rio de Janeiro, Brazil. Radboud University, Nijmegen, Netherlands. Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskie Gory 1-73, 119992 Moscow, Russia. North Carolina State University, Raleigh, NC, USA. New York Genome Center, New York, NY, USA. Department of Systems Biology, Columbia University, New York, NY, USA. Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Catalonia, Spain. Joint CRG-Barcelona Super Computing Center (BSC)-Institut de Recerca Biomedica (IRB) Program in Computational Biology, Barcelona, Catalonia, Spain. ; North Carolina State University, Raleigh, NC, USA. ; Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland. New York Genome Center, New York, NY, USA. Department of Systems Biology, Columbia University, New York, NY, USA. ; Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. kardlie@broadinstitute.org roderic.guigo@crg.cat. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Catalonia, Spain. Joint CRG-Barcelona Super Computing Center (BSC)-Institut de Recerca Biomedica (IRB) Program in Computational Biology, Barcelona, Catalonia, Spain. kardlie@broadinstitute.org roderic.guigo@crg.cat.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25954002" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Female ; Gene Expression Profiling ; *Gene Expression Regulation ; Genome, Human/*genetics ; Humans ; Male ; Organ Specificity/genetics ; Phenotype ; Polymorphism, Single Nucleotide ; Sequence Analysis, RNA ; Sex Factors ; *Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-20
    Description: G protein-coupled receptors (GPCRs) relay diverse extracellular signals into cells by catalyzing nucleotide release from heterotrimeric G proteins, but the mechanism underlying this quintessential molecular signaling event has remained unclear. Here we use atomic-level simulations to elucidate the nucleotide-release mechanism. We find that the G protein alpha subunit Ras and helical domains-previously observed to separate widely upon receptor binding to expose the nucleotide-binding site-separate spontaneously and frequently even in the absence of a receptor. Domain separation is necessary but not sufficient for rapid nucleotide release. Rather, receptors catalyze nucleotide release by favoring an internal structural rearrangement of the Ras domain that weakens its nucleotide affinity. We use double electron-electron resonance spectroscopy and protein engineering to confirm predictions of our computationally determined mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dror, Ron O -- Mildorf, Thomas J -- Hilger, Daniel -- Manglik, Aashish -- Borhani, David W -- Arlow, Daniel H -- Philippsen, Ansgar -- Villanueva, Nicolas -- Yang, Zhongyu -- Lerch, Michael T -- Hubbell, Wayne L -- Kobilka, Brian K -- Sunahara, Roger K -- Shaw, David E -- P30EY00331/EY/NEI NIH HHS/ -- R01EY05216/EY/NEI NIH HHS/ -- R01GM083118/GM/NIGMS NIH HHS/ -- T32 GM008294/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1361-5. doi: 10.1126/science.aaa5264.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉D. E. Shaw Research, New York, NY 10036, USA. ron.dror@deshawresearch.com david.shaw@deshawresearch.com. ; D. E. Shaw Research, New York, NY 10036, USA. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. ; Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA. ; D. E. Shaw Research, New York, NY 10036, USA. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. ron.dror@deshawresearch.com david.shaw@deshawresearch.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089515" target="_blank"〉PubMed〈/a〉
    Keywords: GTP-Binding Protein alpha Subunits, Gi-Go/*chemistry ; GTP-Binding Protein alpha Subunits, Gs/*chemistry ; Guanine Nucleotide Exchange Factors/*chemistry ; Humans ; Models, Chemical ; Molecular Dynamics Simulation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/*chemistry ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-06-20
    Description: During flexible behavior, multiple brain regions encode sensory inputs, the current task, and choices. It remains unclear how these signals evolve. We simultaneously recorded neuronal activity from six cortical regions [middle temporal area (MT), visual area four (V4), inferior temporal cortex (IT), lateral intraparietal area (LIP), prefrontal cortex (PFC), and frontal eye fields (FEF)] of monkeys reporting the color or motion of stimuli. After a transient bottom-up sweep, there was a top-down flow of sustained task information from frontoparietal to visual cortex. Sensory information flowed from visual to parietal and prefrontal cortex. Choice signals developed simultaneously in frontoparietal regions and travelled to FEF and sensory cortex. This suggests that flexible sensorimotor choices emerge in a frontoparietal network from the integration of opposite flows of sensory and task information.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721574/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721574/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Siegel, Markus -- Buschman, Timothy J -- Miller, Earl K -- 5R37MH087027/MH/NIMH NIH HHS/ -- R00 MH092715/MH/NIMH NIH HHS/ -- R37 MH087027/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1352-5. doi: 10.1126/science.aab0551.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Integrative Neuroscience and MEG Center, University of Tubingen, Tubingen, Germany. Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. markus.siegel@uni-tuebingen.de. ; Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA. ; Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089513" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebral Cortex/*physiology ; Color Vision ; Cues ; Feedback, Sensory/*physiology ; Female ; Macaca mulatta ; Male ; Mental Processes/*physiology ; Motion ; Parietal Lobe/physiology ; Photic Stimulation ; Prefrontal Cortex/physiology ; Temporal Lobe/physiology ; Visual Cortex/physiology ; Visual Pathways/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-26
    Description: Purine biosynthetic enzymes organize into dynamic cellular bodies called purinosomes. Little is known about the spatiotemporal control of these structures. Using super-resolution microscopy, we demonstrated that purinosomes colocalized with mitochondria, and these results were supported by isolation of purinosome enzymes with mitochondria. Moreover, the number of purinosome-containing cells responded to dysregulation of mitochondrial function and metabolism. To explore the role of intracellular signaling, we performed a kinome screen using a label-free assay and found that mechanistic target of rapamycin (mTOR) influenced purinosome assembly. mTOR inhibition reduced purinosome-mitochondria colocalization and suppressed purinosome formation stimulated by mitochondria dysregulation. Collectively, our data suggest an mTOR-mediated link between purinosomes and mitochondria, and a general means by which mTOR regulates nucleotide metabolism by spatiotemporal control over protein association.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉French, Jarrod B -- Jones, Sara A -- Deng, Huayun -- Pedley, Anthony M -- Kim, Doory -- Chan, Chung Yu -- Hu, Haibei -- Pugh, Raymond J -- Zhao, Hong -- Zhang, Youxin -- Huang, Tony Jun -- Fang, Ye -- Zhuang, Xiaowei -- Benkovic, Stephen J -- 1R33EB019785-01/EB/NIBIB NIH HHS/ -- GM024129/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):733-7. doi: 10.1126/science.aac6054.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Cell Biology, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. ; Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA. ; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA. ; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA. ; Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu. ; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA. Department of Physics, Harvard University, Cambridge, MA 02138, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu. ; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA. jarrod.french@stonybrook.edu fangy2@corning.com zhuang@chemistry.harvard.edu sjb1@psu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912862" target="_blank"〉PubMed〈/a〉
    Keywords: HeLa Cells ; Humans ; Microscopy ; Mitochondria/*metabolism/ultrastructure ; Purines/*metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-17
    Description: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847731/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847731/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roy, Dheeraj S -- Arons, Autumn -- Mitchell, Teryn I -- Pignatelli, Michele -- Ryan, Tomas J -- Tonegawa, Susumu -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 24;531(7595):508-12. doi: 10.1038/nature17172. Epub 2016 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26982728" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Alzheimer Disease/*pathology/*physiopathology ; Amnesia/pathology/physiopathology ; Amyloid beta-Protein Precursor/genetics ; Animals ; Dendritic Spines/pathology/physiology ; Dentate Gyrus/*cytology/pathology/*physiology/physiopathology ; *Disease Models, Animal ; Early Medical Intervention ; Humans ; Long-Term Potentiation ; Male ; Memory, Episodic ; Memory, Long-Term/*physiology ; Mice ; Mice, Transgenic ; Optogenetics ; Plaque, Amyloid ; Presenilin-1/genetics ; Synapses/metabolism ; Transgenes/genetics ; tau Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2016-03-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liang, T Jake -- England -- Nature. 2016 Mar 17;531(7594):313-4. doi: 10.1038/531313a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1800, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26983537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle Proteins/*metabolism ; Hepatitis B virus/*physiology ; *Host Specificity ; Humans ; Male ; Trans-Activators/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...