ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (158)
  • Transfection  (158)
  • 2020-2023
  • 2020-2020
  • 1995-1999  (84)
  • 1990-1994  (74)
  • 1965-1969
  • Computer Science  (158)
Collection
  • Articles  (158)
Years
Year
  • 1
    Publication Date: 1990-12-21
    Description: The progesterone receptor (PR) in the chicken oviduct is a phosphoprotein that regulates gene transcription in the presence of progesterone. Treatment with progesterone in vivo stimulates phosphorylation of the progesterone receptor. With transient transfection assays, the present work has tested whether phosphorylation participates in the regulation of PR-mediated transcription. Treatment with 8-bromo-cyclic adenosine monophosphate (8-Br cAMP), a stimulator of cAMP-dependent protein kinase [protein kinase A (PKA)], mimicked progesterone-dependent, receptor-mediated transcription in the absence of progesterone. Inhibition of PKA blocked hormone action. Treatment with okadaic acid, an inhibitor of protein phosphatases 1 and 2A, stimulated transcription in a manner similar to that of progesterone. These observations suggest that phosphorylation of the PR or other proteins in the transcription complex can modulate PR-mediated transcription in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Denner, L A -- Weigel, N L -- Maxwell, B L -- Schrader, W T -- O'Malley, B W -- HD-07857/HD/NICHD NIH HHS/ -- HD-22061/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1740-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2176746" target="_blank"〉PubMed〈/a〉
    Keywords: 8-Bromo Cyclic Adenosine Monophosphate/pharmacology ; Animals ; Cell Line ; Chickens ; Female ; Gene Expression Regulation ; Kinetics ; Oviducts/metabolism ; Phosphoprotein Phosphatases/antagonists & inhibitors ; Phosphorylation ; Progesterone/*pharmacology ; Receptors, Progesterone/*metabolism ; *Transcription, Genetic/drug effects ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-07-10
    Description: A nonpeptidyl small molecule SB 247464, capable of activating granulocyte-colony-stimulating factor (G-CSF) signal transduction pathways, was identified in a high-throughput assay in cultured cells. Like G-CSF, SB 247464 induced tyrosine phosphorylation of multiple signaling proteins and stimulated primary murine bone marrow cells to form granulocytic colonies in vitro. It also elevated peripheral blood neutrophil counts in mice. The extracellular domain of the murine G-CSF receptor was required for the activity of SB 247464, suggesting that the compound acts by oligomerizing receptor chains. The results indicate that a small molecule can activate a receptor that normally binds a relatively large protein ligand.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tian, S S -- Lamb, P -- King, A G -- Miller, S G -- Kessler, L -- Luengo, J I -- Averill, L -- Johnson, R K -- Gleason, J G -- Pelus, L M -- Dillon, S B -- Rosen, J -- New York, N.Y. -- Science. 1998 Jul 10;281(5374):257-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Transcription Research, Ligand Pharmaceuticals, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9657720" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzimidazoles/chemistry/metabolism/*pharmacology ; Cell Line ; Colony-Forming Units Assay ; DNA-Binding Proteins/metabolism ; Dimerization ; Female ; Granulocyte Colony-Stimulating Factor/metabolism/pharmacology ; Granulocytes/cytology ; Guanidines/chemistry/metabolism/*pharmacology ; Humans ; Janus Kinase 1 ; Janus Kinase 2 ; Leukocyte Count ; Leukopoiesis ; Mice ; Mice, Inbred C57BL ; *Milk Proteins ; Neutrophils/cytology ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/metabolism ; *Proto-Oncogene Proteins ; Receptors, Granulocyte Colony-Stimulating Factor/chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; STAT3 Transcription Factor ; STAT5 Transcription Factor ; Signal Transduction/drug effects ; Species Specificity ; Trans-Activators/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-04-15
    Description: The first step in oral absorption of many medically important peptide-based drugs is mediated by an intestinal proton-dependent peptide transporter. This transporter facilitates the oral absorption of beta-lactam antibiotics and angiotensin-converting enzyme inhibitors from the intestine into enterocytes lining the luminal wall. A monoclonal antibody that blocked uptake of cephalexin was used to identify and clone a gene that encodes an approximately 92-kilodalton membrane protein that was associated with the acquisition of peptide transport activity by transport-deficient cells. The amino acid sequence deduced from the complementary DNA sequence of the cloned gene indicated that this transport-associated protein shares several conserved structural elements with the cadherin superfamily of calcium-dependent, cell-cell adhesion proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dantzig, A H -- Hoskins, J A -- Tabas, L B -- Bright, S -- Shepard, R L -- Jenkins, I L -- Duckworth, D C -- Sportsman, J R -- Mackensen, D -- Rosteck, P R Jr -- New York, N.Y. -- Science. 1994 Apr 15;264(5157):430-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8153632" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Transport ; CHO Cells ; Cadherins/*chemistry ; Carrier Proteins/*chemistry/genetics/isolation & purification/metabolism ; Cephalexin/*metabolism ; Cloning, Molecular ; Cricetinae ; Glycosylation ; Humans ; Hydrogen-Ion Concentration ; Intestinal Mucosa/*metabolism ; Leucine/analogs & derivatives/metabolism ; *Membrane Transport Proteins ; Mice ; Mice, Inbred A ; Molecular Sequence Data ; Open Reading Frames ; Sequence Homology, Amino Acid ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-07-16
    Description: Nerve growth factor (NGF) binding to cellular receptors is required for the survival of some neural cells. In contrast to TrkA, the high-affinity NGF receptor that transduces NGF signals for survival and differentiation, the function of the low-affinity NGF receptor, p75NGFR, remains uncertain. Expression of p75NGFR induced neural cell death constitutively when p75NGFR was unbound; binding by NGF or monoclonal antibody, however, inhibited cell death induced by p75NGFR. Thus, expression of p75NGFR may explain the dependence of some neural cells on NGF for survival. These findings also suggest that p75NGFR has some functional similarities to other members of a superfamily of receptors that include tumor necrosis factor receptors, Fas (Apo-1), and CD40.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rabizadeh, S -- Oh, J -- Zhong, L T -- Yang, J -- Bitler, C M -- Butcher, L L -- Bredesen, D E -- AG10671/AG/NIA NIH HHS/ -- NS10928/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 16;261(5119):345-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8332899" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis/drug effects ; Cell Line ; Cell Survival/drug effects ; Culture Media, Serum-Free ; Nerve Growth Factors/*metabolism/pharmacology ; Neurons/*cytology/drug effects/metabolism ; PC12 Cells ; Receptors, Nerve Growth Factor/metabolism/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1992-06-05
    Description: The phagocyte respiratory burst oxidase is a flavin-adenine dinucleotide (FAD)-dependent dehydrogenase and an electron transferase that reduces molecular oxygen to superoxide anion, a precursor of microbicidal oxidants. Several proteins required for assembly of the oxidase have been characterized, but the identity of its flavin-binding component has been unclear. Oxidase activity was reconstituted in vitro with only the purified oxidase proteins p47phox, p67phox, Rac-related guanine nucleotide (GTP)-binding proteins, and membrane-bound cytochrome b558. The reconstituted oxidase required added FAD, and FAD binding was localized to cytochrome b558. Alignment of the amino acid sequence of the beta subunit of cytochrome b558 (gp91phox) with other flavoproteins revealed similarities to the nicotinamide adenine dinucleotide phosphate (reduced) (NADPH)-binding domains. Thus flavocytochrome b558 is the only obligate electron transporting component of the NADPH oxidase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rotrosen, D -- Yeung, C L -- Leto, T L -- Malech, H L -- Kwong, C H -- New York, N.Y. -- Science. 1992 Jun 5;256(5062):1459-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1318579" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; Cell-Free System ; Cytochrome b Group/*blood/genetics/isolation & purification ; Ferredoxin-NADP Reductase/genetics/metabolism ; Humans ; Insects ; Molecular Sequence Data ; NADH, NADPH Oxidoreductases/*blood/genetics/isolation & purification ; NADP/metabolism ; NADPH Oxidase ; Neutrophils/*enzymology ; Phagocytes/*enzymology ; Plants/enzymology ; Recombinant Proteins/chemistry/metabolism ; Sequence Homology, Nucleic Acid ; Superoxides/blood ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-01-24
    Description: Gene expression was visualized in single living mammalian cells with beta-lactamase as a reporter that hydrolyzes a substrate loaded intracellularly as a membrane-permeant ester. Each enzyme molecule changed the fluorescence of many substrate molecules from green to blue by disrupting resonance energy transfer. This wavelength shift was detectable by eye or color film in individual cells containing less than 100 beta-lactamase molecules. The robust change in emission ratio reveals quantitative heterogeneity in real-time gene expression, enables clonal selection by flow cytometry, and forms a basis for high-throughput screening of pharmaceutical candidate drugs in living mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zlokarnik, G -- Negulescu, P A -- Knapp, T E -- Mere, L -- Burres, N -- Feng, L -- Whitney, M -- Roemer, K -- Tsien, R Y -- NS27177/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 2;279(5347):84-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aurora Biosciences, 11010 Torreyana Road, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417030" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Separation/methods ; Clone Cells/*metabolism ; DNA-Binding Proteins/genetics/metabolism ; Drug Evaluation, Preclinical ; Energy Transfer ; Flow Cytometry ; Fluoresceins/metabolism ; Fluorescent Dyes/metabolism ; *Gene Expression ; *Genes, Reporter ; Half-Life ; Humans ; *Lactams ; Muscarinic Agonists/pharmacology ; Muscarinic Antagonists/pharmacology ; NFATC Transcription Factors ; *Nuclear Proteins ; Sensitivity and Specificity ; Spectrometry, Fluorescence ; Transcription Factors/genetics/metabolism ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured ; Umbelliferones/metabolism ; beta-Lactamases/*genetics/metabolism ; beta-Lactams/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-07-31
    Description: Stress-inducible MICA, a distant homolog of major histocompatibility complex (MHC) class I, functions as an antigen for gammadelta T cells and is frequently expressed in epithelial tumors. A receptor for MICA was detected on most gammadelta T cells, CD8+ alphabeta T cells, and natural killer (NK) cells and was identified as NKG2D. Effector cells from all these subsets could be stimulated by ligation of NKG2D. Engagement of NKG2D activated cytolytic responses of gammadelta T cells and NK cells against transfectants and epithelial tumor cells expressing MICA. These results define an activating immunoreceptor-MHC ligand interaction that may promote antitumor NK and T cell responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bauer, S -- Groh, V -- Wu, J -- Steinle, A -- Phillips, J H -- Lanier, L L -- Spies, T -- P01 CA18221/CA/NCI NIH HHS/ -- R01 AI30581/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):727-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fred Hutchinson Cancer Research Center, Clinical Research Division, 1100 Fairview Avenue North, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10426993" target="_blank"〉PubMed〈/a〉
    Keywords: Cytotoxicity, Immunologic ; Histocompatibility Antigens Class I/*immunology/metabolism ; Humans ; Jurkat Cells ; Killer Cells, Natural/*immunology ; Ligands ; *Lymphocyte Activation ; Lymphocyte Subsets/immunology ; Membrane Proteins/metabolism ; NK Cell Lectin-Like Receptor Subfamily K ; Receptors, Antigen, T-Cell, gamma-delta/immunology ; Receptors, Immunologic/chemistry/genetics/*immunology/metabolism ; Receptors, Natural Killer Cell ; Signal Transduction ; T-Lymphocytes/*immunology ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1999-06-26
    Description: Motilin is a 22-amino acid peptide hormone expressed throughout the gastrointestinal (GI) tract of humans and other species. It affects gastric motility by stimulating interdigestive antrum and duodenal contractions. A heterotrimeric guanosine triphosphate-binding protein (G protein)-coupled receptor for motilin was isolated from human stomach, and its amino acid sequence was found to be 52 percent identical to the human receptor for growth hormone secretagogues. The macrolide antibiotic erythromycin also interacted with the cloned motilin receptor, providing a molecular basis for its effects on the human GI tract. The motilin receptor is expressed in enteric neurons of the human duodenum and colon. Development of motilin receptor agonists and antagonists may be useful in the treatment of multiple disorders of GI motility.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feighner, S D -- Tan, C P -- McKee, K K -- Palyha, O C -- Hreniuk, D L -- Pong, S S -- Austin, C P -- Figueroa, D -- MacNeil, D -- Cascieri, M A -- Nargund, R -- Bakshi, R -- Abramovitz, M -- Stocco, R -- Kargman, S -- O'Neill, G -- Van Der Ploeg, L H -- Evans, J -- Patchett, A A -- Smith, R G -- Howard, A D -- New York, N.Y. -- Science. 1999 Jun 25;284(5423):2184-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Metabolic Disorders, Department of Medicinal Chemistry, Merck Research Laboratories, Building RY-80Y-265, 126 East Lincoln Avenue, Rahway, NJ 07065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10381885" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Base Sequence ; Binding Sites ; Calcium/metabolism ; Cell Line ; Chromosome Mapping ; Chromosomes, Human, Pair 13 ; Cloning, Molecular ; Colon/*metabolism ; Erythromycin/metabolism ; GTP-Binding Proteins/metabolism ; Humans ; In Situ Hybridization ; Intestine, Small/*metabolism ; Ligands ; Molecular Sequence Data ; Motilin/analogs & derivatives/*metabolism ; Receptors, Gastrointestinal Hormone/*chemistry/*genetics/metabolism ; Receptors, Neuropeptide/*chemistry/*genetics/metabolism ; Stomach/*metabolism ; Thyroid Gland/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-06-13
    Description: Two families of small peptides that bind to the human thrombopoietin receptor and compete with the binding of the natural ligand thrombopoietin (TPO) were identified from recombinant peptide libraries. The sequences of these peptides were not found in the primary sequence of TPO. Screening libraries of variants of one of these families under affinity-selective conditions yielded a 14-amino acid peptide (Ile-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala) with high affinity (dissociation constant approximately 2 nanomolar) that stimulates the proliferation of a TPO-responsive Ba/F3 cell line with a median effective concentration (EC50) of 400 nanomolar. Dimerization of this peptide by a carboxyl-terminal linkage to a lysine branch produced a compound with an EC50 of 100 picomolar, which was equipotent to the 332-amino acid natural cytokine in cell-based assays. The peptide dimer also stimulated the in vitro proliferation and maturation of megakaryocytes from human bone marrow cells and promoted an increase in platelet count when administered to normal mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cwirla, S E -- Balasubramanian, P -- Duffin, D J -- Wagstrom, C R -- Gates, C M -- Singer, S C -- Davis, A M -- Tansik, R L -- Mattheakis, L C -- Boytos, C M -- Schatz, P J -- Baccanari, D P -- Wrighton, N C -- Barrett, R W -- Dower, W J -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1696-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Affymax Research Institute, 4001 Miranda Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180079" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding, Competitive ; Blood Platelets/cytology ; Cell Division ; Cell Line ; Cells, Cultured ; Consensus Sequence ; Dimerization ; Erythropoietin/pharmacology ; Hematopoiesis/drug effects ; Humans ; Megakaryocytes/cytology ; Mice ; Molecular Sequence Data ; *Neoplasm Proteins ; Oligopeptides/*metabolism/*pharmacology ; Peptide Library ; Peptides/metabolism/pharmacology ; Platelet Count ; Proto-Oncogene Proteins/*agonists/metabolism ; *Receptors, Cytokine ; Receptors, Thrombopoietin ; Recombinant Proteins/metabolism/pharmacology ; Thrombopoietin/*metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-08-08
    Description: TRAIL (also called Apo2L) belongs to the tumor necrosis factor family, activates rapid apoptosis in tumor cells, and binds to the death-signaling receptor DR4. Two additional TRAIL receptors were identified. The receptor designated death receptor 5 (DR5) contained a cytoplasmic death domain and induced apoptosis much like DR4. The receptor designated decoy receptor 1 (DcR1) displayed properties of a glycophospholipid-anchored cell surface protein. DcR1 acted as a decoy receptor that inhibited TRAIL signaling. Thus, a cell surface mechanism exists for the regulation of cellular responsiveness to pro-apoptotic stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheridan, J P -- Marsters, S A -- Pitti, R M -- Gurney, A -- Skubatch, M -- Baldwin, D -- Ramakrishnan, L -- Gray, C L -- Baker, K -- Wood, W I -- Goddard, A D -- Godowski, P -- Ashkenazi, A -- New York, N.Y. -- Science. 1997 Aug 8;277(5327):818-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Genentech, South San Francisco, CA 94080-4918, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9242611" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Apoptosis ; Apoptosis Regulatory Proteins ; Cell Membrane/metabolism ; Cells, Cultured ; GPI-Linked Proteins ; Glycosylphosphatidylinositols/metabolism ; HeLa Cells ; Humans ; Ligands ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; NF-kappa B/metabolism ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Signal Transduction ; TNF-Related Apoptosis-Inducing Ligand ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor Decoy Receptors ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...