ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Crystallography, X-Ray  (19)
  • *Gene Expression Regulation  (12)
  • American Association for the Advancement of Science (AAAS)  (30)
  • American Meteorological Society
  • 2015-2019  (30)
  • 2010-2014
  • 1955-1959
  • 2015  (30)
Collection
Publisher
Years
  • 2015-2019  (30)
  • 2010-2014
  • 1955-1959
Year
  • 1
    Publication Date: 2015-05-09
    Description: Accurate prediction of the functional effect of genetic variation is critical for clinical genome interpretation. We systematically characterized the transcriptome effects of protein-truncating variants, a class of variants expected to have profound effects on gene function, using data from the Genotype-Tissue Expression (GTEx) and Geuvadis projects. We quantitated tissue-specific and positional effects on nonsense-mediated transcript decay and present an improved predictive model for this decay. We directly measured the effect of variants both proximal and distal to splice junctions. Furthermore, we found that robustness to heterozygous gene inactivation is not due to dosage compensation. Our results illustrate the value of transcriptome data in the functional interpretation of genetic variants.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537935/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537935/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rivas, Manuel A -- Pirinen, Matti -- Conrad, Donald F -- Lek, Monkol -- Tsang, Emily K -- Karczewski, Konrad J -- Maller, Julian B -- Kukurba, Kimberly R -- DeLuca, David S -- Fromer, Menachem -- Ferreira, Pedro G -- Smith, Kevin S -- Zhang, Rui -- Zhao, Fengmei -- Banks, Eric -- Poplin, Ryan -- Ruderfer, Douglas M -- Purcell, Shaun M -- Tukiainen, Taru -- Minikel, Eric V -- Stenson, Peter D -- Cooper, David N -- Huang, Katharine H -- Sullivan, Timothy J -- Nedzel, Jared -- GTEx Consortium -- Geuvadis Consortium -- Bustamante, Carlos D -- Li, Jin Billy -- Daly, Mark J -- Guigo, Roderic -- Donnelly, Peter -- Ardlie, Kristin -- Sammeth, Michael -- Dermitzakis, Emmanouil T -- McCarthy, Mark I -- Montgomery, Stephen B -- Lappalainen, Tuuli -- MacArthur, Daniel G -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 095552/Wellcome Trust/United Kingdom -- 095552/Z/11/Z/Wellcome Trust/United Kingdom -- 098381/Wellcome Trust/United Kingdom -- DA006227/DA/NIDA NIH HHS/ -- HHSN261200800001E/CA/NCI NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- HHSN268201000029C/HL/NHLBI NIH HHS/ -- HHSN268201000029C/PHS HHS/ -- MH090936/MH/NIMH NIH HHS/ -- MH090937/MH/NIMH NIH HHS/ -- MH090941/MH/NIMH NIH HHS/ -- MH090948/MH/NIMH NIH HHS/ -- MH090951/MH/NIMH NIH HHS/ -- P30 DK020595/DK/NIDDK NIH HHS/ -- R01 GM104371/GM/NIGMS NIH HHS/ -- R01 MH090941/MH/NIMH NIH HHS/ -- R01 MH101810/MH/NIMH NIH HHS/ -- R01 MH101814/MH/NIMH NIH HHS/ -- R01 MH101820/MH/NIMH NIH HHS/ -- R01GM104371/GM/NIGMS NIH HHS/ -- R01MH090941/MH/NIMH NIH HHS/ -- R01MH101810/MH/NIMH NIH HHS/ -- R01MH101814/MH/NIMH NIH HHS/ -- U01 HG007593/HG/NHGRI NIH HHS/ -- U01HG007593/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 May 8;348(6235):666-9. doi: 10.1126/science.1261877.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK. rivas@well.ox.ac.uk tlappalainen@nygenome.org macarthur@atgu.mgh.harvard.edu. ; FInstitute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland. ; Washington University in St. Louis, St. Louis, MO, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. ; Department of Genetics, Stanford University, Stanford, CA, USA. Department of Pathology, Stanford University, Stanford, CA, USA. Biomedical Informatics Program, Stanford University, Stanford, CA, USA. ; Department of Genetics, Stanford University, Stanford, CA, USA. Department of Pathology, Stanford University, Stanford, CA, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. Department of Psychiatry, Mt. Sinai Hospital, NY, USA. ; Department of Genetic Medicine and Development,University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland. ; Department of Genetics, Stanford University, Stanford, CA, USA. ; Department of Psychiatry, Mt. Sinai Hospital, NY, USA. Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. Department of Psychiatry, Mt. Sinai Hospital, NY, USA. Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA. ; Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK. ; Center for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. ; Wellcome Trust Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK. Department of Statistics, University of Oxford, Oxford, UK. ; Center for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. National Institute for Scientific Computing (LNCC), Petropolis, Rio de Janeiro, Brazil. ; Wellcome Trust Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK. Oxford Center for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK. ; Department of Genetics, Stanford University, Stanford, CA, USA. Department of Genetic Medicine and Development,University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland. New York Genome Center, New York, NY, USA. Department of Systems Biology, Columbia University, New York, NY, USA. rivas@well.ox.ac.uk tlappalainen@nygenome.org macarthur@atgu.mgh.harvard.edu. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. Department of Medicine, Harvard Medical School, Boston, MA, USA. rivas@well.ox.ac.uk tlappalainen@nygenome.org macarthur@atgu.mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25954003" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Gene Expression Profiling ; *Gene Expression Regulation ; Gene Silencing ; *Genetic Variation ; Genome, Human/*genetics ; Heterozygote ; Humans ; Nonsense Mediated mRNA Decay ; Phenotype ; Proteins/*genetics ; *Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-09
    Description: Transcriptional regulation and posttranscriptional processing underlie many cellular and organismal phenotypes. We used RNA sequence data generated by Genotype-Tissue Expression (GTEx) project to investigate the patterns of transcriptome variation across individuals and tissues. Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples. These signatures are dominated by a relatively small number of genes-which is most clearly seen in blood-though few are exclusive to a particular tissue and vary more across tissues than individuals. Genes exhibiting high interindividual expression variation include disease candidates associated with sex, ethnicity, and age. Primary transcription is the major driver of cellular specificity, with splicing playing mostly a complementary role; except for the brain, which exhibits a more divergent splicing program. Variation in splicing, despite its stochasticity, may play in contrast a comparatively greater role in defining individual phenotypes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547472/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547472/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mele, Marta -- Ferreira, Pedro G -- Reverter, Ferran -- DeLuca, David S -- Monlong, Jean -- Sammeth, Michael -- Young, Taylor R -- Goldmann, Jakob M -- Pervouchine, Dmitri D -- Sullivan, Timothy J -- Johnson, Rory -- Segre, Ayellet V -- Djebali, Sarah -- Niarchou, Anastasia -- GTEx Consortium -- Wright, Fred A -- Lappalainen, Tuuli -- Calvo, Miquel -- Getz, Gad -- Dermitzakis, Emmanouil T -- Ardlie, Kristin G -- Guigo, Roderic -- HHSN261200800001E/PHS HHS/ -- HHSN268201000029C/HL/NHLBI NIH HHS/ -- HHSN268201000029C/PHS HHS/ -- R01 DA006227-17/DA/NIDA NIH HHS/ -- R01 MH090936/MH/NIMH NIH HHS/ -- R01 MH090941/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2015 May 8;348(6235):660-5. doi: 10.1126/science.aaa0355.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Harvard Department of stem cell and regenerative biology, Harvard University, Cambridge, MA, USA. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. McGill University, Montreal, Canada. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. National Institute for Scientific Computing (LNCC), Petropolis, Rio de Janeiro, Brazil. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. Radboud University, Nijmegen, Netherlands. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskie Gory 1-73, 119992 Moscow, Russia. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. ; Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Harvard Department of stem cell and regenerative biology, Harvard University, Cambridge, MA, USA. Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland. Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. Broad Institute of MIT and Harvard, Cambridge, MA, USA. McGill University, Montreal, Canada. National Institute for Scientific Computing (LNCC), Petropolis, Rio de Janeiro, Brazil. Radboud University, Nijmegen, Netherlands. Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskie Gory 1-73, 119992 Moscow, Russia. North Carolina State University, Raleigh, NC, USA. New York Genome Center, New York, NY, USA. Department of Systems Biology, Columbia University, New York, NY, USA. Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Catalonia, Spain. Joint CRG-Barcelona Super Computing Center (BSC)-Institut de Recerca Biomedica (IRB) Program in Computational Biology, Barcelona, Catalonia, Spain. ; North Carolina State University, Raleigh, NC, USA. ; Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland. New York Genome Center, New York, NY, USA. Department of Systems Biology, Columbia University, New York, NY, USA. ; Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA, USA. kardlie@broadinstitute.org roderic.guigo@crg.cat. ; Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Catalonia, Spain. Joint CRG-Barcelona Super Computing Center (BSC)-Institut de Recerca Biomedica (IRB) Program in Computational Biology, Barcelona, Catalonia, Spain. kardlie@broadinstitute.org roderic.guigo@crg.cat.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25954002" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Female ; Gene Expression Profiling ; *Gene Expression Regulation ; Genome, Human/*genetics ; Humans ; Male ; Organ Specificity/genetics ; Phenotype ; Polymorphism, Single Nucleotide ; Sequence Analysis, RNA ; Sex Factors ; *Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-19
    Description: Voltage-gated sodium (Nav) channels propagate action potentials in excitable cells. Accordingly, Nav channels are therapeutic targets for many cardiovascular and neurological disorders. Selective inhibitors have been challenging to design because the nine mammalian Nav channel isoforms share high sequence identity and remain recalcitrant to high-resolution structural studies. Targeting the human Nav1.7 channel involved in pain perception, we present a protein-engineering strategy that has allowed us to determine crystal structures of a novel receptor site in complex with isoform-selective antagonists. GX-936 and related inhibitors bind to the activated state of voltage-sensor domain IV (VSD4), where their anionic aryl sulfonamide warhead engages the fourth arginine gating charge on the S4 helix. By opposing VSD4 deactivation, these compounds inhibit Nav1.7 through a voltage-sensor trapping mechanism, likely by stabilizing inactivated states of the channel. Residues from the S2 and S3 helices are key determinants of isoform selectivity, and bound phospholipids implicate the membrane as a modulator of channel function and pharmacology. Our results help to elucidate the molecular basis of voltage sensing and establish structural blueprints to design selective Nav channel antagonists.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahuja, Shivani -- Mukund, Susmith -- Deng, Lunbin -- Khakh, Kuldip -- Chang, Elaine -- Ho, Hoangdung -- Shriver, Stephanie -- Young, Clint -- Lin, Sophia -- Johnson, J P Jr -- Wu, Ping -- Li, Jun -- Coons, Mary -- Tam, Christine -- Brillantes, Bobby -- Sampang, Honorio -- Mortara, Kyle -- Bowman, Krista K -- Clark, Kevin R -- Estevez, Alberto -- Xie, Zhiwei -- Verschoof, Henry -- Grimwood, Michael -- Dehnhardt, Christoph -- Andrez, Jean-Christophe -- Focken, Thilo -- Sutherlin, Daniel P -- Safina, Brian S -- Starovasnik, Melissa A -- Ortwine, Daniel F -- Franke, Yvonne -- Cohen, Charles J -- Hackos, David H -- Koth, Christopher M -- Payandeh, Jian -- New York, N.Y. -- Science. 2015 Dec 18;350(6267):aac5464. doi: 10.1126/science.aac5464.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Biology, Xenon Pharmaceuticals Inc., Burnaby, British Columbia, V5G 4W8, Canada. ; Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Chemistry, Xenon Pharmaceuticals Inc., Burnaby, British Columbia, V5G 4W8, Canada. ; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA. hackos.david@gene.com koth.christopher@gene.com payandeh.jian@gene.com. ; Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA. hackos.david@gene.com koth.christopher@gene.com payandeh.jian@gene.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26680203" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane/chemistry ; Crystallization/methods ; Crystallography, X-Ray ; DNA Mutational Analysis ; Humans ; Models, Molecular ; Molecular Sequence Data ; NAV1.7 Voltage-Gated Sodium Channel/*chemistry/genetics ; Pain Perception/drug effects ; Protein Engineering ; Protein Isoforms/antagonists & inhibitors/chemistry ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sodium Channel Blockers/*chemistry/*pharmacology ; Sulfonamides/*chemistry/*pharmacology ; Thiadiazoles/*chemistry/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-17
    Description: Telomerase helps maintain telomeres by processive synthesis of telomere repeat DNA at their 3'-ends, using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). We report the cryo-electron microscopy structure of Tetrahymena telomerase at ~9 angstrom resolution. In addition to seven known holoenzyme proteins, we identify two additional proteins that form a complex (TEB) with single-stranded telomere DNA-binding protein Teb1, paralogous to heterotrimeric replication protein A (RPA). The p75-p45-p19 subcomplex is identified as another RPA-related complex, CST (CTC1-STN1-TEN1). This study reveals the paths of TER in the TERT-TER-p65 catalytic core and single-stranded DNA exit; extensive subunit interactions of the TERT essential N-terminal domain, p50, and TEB; and other subunit identities and structures, including p19 and p45C crystal structures. Our findings provide structural and mechanistic insights into telomerase holoenzyme function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687456/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687456/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Jiansen -- Chan, Henry -- Cash, Darian D -- Miracco, Edward J -- Ogorzalek Loo, Rachel R -- Upton, Heather E -- Cascio, Duilio -- O'Brien Johnson, Reid -- Collins, Kathleen -- Loo, Joseph A -- Zhou, Z Hong -- Feigon, Juli -- GM007185/GM/NIGMS NIH HHS/ -- GM048123/GM/NIGMS NIH HHS/ -- GM071940/GM/NIGMS NIH HHS/ -- GM101874/GM/NIGMS NIH HHS/ -- GM103479/GM/NIGMS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- P41 RR015301/RR/NCRR NIH HHS/ -- R01 GM048123/GM/NIGMS NIH HHS/ -- R01 GM054198/GM/NIGMS NIH HHS/ -- R01 GM071940/GM/NIGMS NIH HHS/ -- R01 GM103479/GM/NIGMS NIH HHS/ -- R01GM054198/GM/NIGMS NIH HHS/ -- S10OD018111/OD/NIH HHS/ -- S10RR23057/RR/NCRR NIH HHS/ -- UL1TR000124/TR/NCATS NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 30;350(6260):aab4070. doi: 10.1126/science.aab4070. Epub 2015 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA. California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA. ; Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. ; Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA. ; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. UCLA-U.S. Department of Energy (DOE) Institute of Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA. ; Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA. UCLA-U.S. Department of Energy (DOE) Institute of Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA. ; Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA. California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA. ; Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. California Nanosystems Institute, UCLA, Los Angeles, CA 90095, USA. UCLA-U.S. Department of Energy (DOE) Institute of Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA. feigon@mbi.ucla.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472759" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Cryoelectron Microscopy ; Crystallography, X-Ray ; DNA, Single-Stranded/chemistry ; Holoenzymes/chemistry ; Protein Binding ; Protein Conformation ; Protein Subunits/chemistry ; RNA/*chemistry ; Replication Protein A/chemistry ; Telomerase/*chemistry ; Telomere/chemistry ; Telomere Homeostasis ; Telomere-Binding Proteins ; Tetrahymena/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-19
    Description: Dysfunction of microRNA (miRNA) metabolism is thought to underlie diseases affecting motoneurons. One miRNA, miR-218, is abundantly and selectively expressed by developing and mature motoneurons. Here we show that mutant mice lacking miR-218 die neonatally and exhibit neuromuscular junction defects, motoneuron hyperexcitability, and progressive motoneuron cell loss, all of which are hallmarks of motoneuron diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Gene profiling reveals that miR-218 modestly represses a cohort of hundreds of genes that are neuronally enriched but are not specific to a single neuron subpopulation. Thus, the set of messenger RNAs targeted by miR-218, designated TARGET(218), defines a neuronal gene network that is selectively tuned down in motoneurons to prevent neuromuscular failure and neurodegeneration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amin, Neal D -- Bai, Ge -- Klug, Jason R -- Bonanomi, Dario -- Pankratz, Matthew T -- Gifford, Wesley D -- Hinckley, Christopher A -- Sternfeld, Matthew J -- Driscoll, Shawn P -- Dominguez, Bertha -- Lee, Kuo-Fen -- Jin, Xin -- Pfaff, Samuel L -- F31-NS080340-03/NS/NINDS NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- P30 NS072031/NS/NINDS NIH HHS/ -- R01AG0476669/AG/NIA NIH HHS/ -- R01GM088278/GM/NIGMS NIH HHS/ -- R01NS044420/NS/NINDS NIH HHS/ -- R01NS054154/NS/NINDS NIH HHS/ -- R01NS060833/NS/NINDS NIH HHS/ -- R21NS084254/NS/NINDS NIH HHS/ -- T32-GM007198/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Dec 18;350(6267):1525-9. doi: 10.1126/science.aad2509.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. Medical Scientist Training Program, University of California, San Diego (UCSD), 9500 Gilman Drive, La Jolla, CA 92037, USA. Biomedical Sciences Graduate Program, UCSD, 9500 Gilman Drive, La Jolla, CA 92037, USA. ; Howard Hughes Medical Institute and Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. ; Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. ; Howard Hughes Medical Institute and Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. Medical Scientist Training Program, University of California, San Diego (UCSD), 9500 Gilman Drive, La Jolla, CA 92037, USA. Neurosciences Graduate Program, UCSD, 9500 Gilman Drive, La Jolla, CA 92037, USA. ; Howard Hughes Medical Institute and Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. Biological Sciences Graduate Program, UCSD, 9500 Gilman Drive, La Jolla, CA 92037, USA. ; Peptide Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. ; Howard Hughes Medical Institute and Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. pfaff@salk.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26680198" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Gene Expression Regulation ; Gene Regulatory Networks ; Mice ; Mice, Knockout ; MicroRNAs/genetics/*physiology ; Motor Neuron Disease/*genetics/physiopathology ; Motor Neurons/metabolism/pathology/*physiology ; Neurodegenerative Diseases/*genetics/pathology ; Spinal Cord/metabolism/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-06-06
    Description: Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbalpha, a transcription factor (TF) that functions both as a core repressive component of the cell-autonomous clock and as a regulator of metabolic genes. Here, we show that Rev-erbalpha modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbalpha to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbalpha regulates metabolic genes primarily by recruiting the HDAC3 co-repressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbalpha and ROR TFs provides a universal mechanism for self-sustained control of the molecular clock across all tissues, whereas Rev-erbalpha uses lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613749/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613749/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Yuxiang -- Fang, Bin -- Emmett, Matthew J -- Damle, Manashree -- Sun, Zheng -- Feng, Dan -- Armour, Sean M -- Remsberg, Jarrett R -- Jager, Jennifer -- Soccio, Raymond E -- Steger, David J -- Lazar, Mitchell A -- F30 DK104513/DK/NIDDK NIH HHS/ -- F32 DK102284/DK/NIDDK NIH HHS/ -- K08 DK094968/DK/NIDDK NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- P30 DK050306/DK/NIDDK NIH HHS/ -- P30 DK19525/DK/NIDDK NIH HHS/ -- R00 DK099443/DK/NIDDK NIH HHS/ -- R01 DK045586/DK/NIDDK NIH HHS/ -- R01 DK098542/DK/NIDDK NIH HHS/ -- R01 DK45586/DK/NIDDK NIH HHS/ -- T32 GM0008275/GM/NIGMS NIH HHS/ -- T32 GM008275/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 26;348(6242):1488-92. doi: 10.1126/science.aab3021. Epub 2015 Jun 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Molecular and Cellular Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA. ; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. lazar@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26044300" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CLOCK Proteins/*genetics ; Circadian Clocks/*genetics ; Circadian Rhythm/*genetics ; *Gene Expression Regulation ; Hepatocyte Nuclear Factor 6/metabolism ; Histone Deacetylases/*metabolism ; Lipid Metabolism/genetics ; Liver/metabolism ; Male ; Metabolism/*genetics ; Mice, Inbred C57BL ; Mice, Knockout ; Nuclear Receptor Subfamily 1, Group D, Member 1/genetics/*metabolism ; Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism ; Organ Specificity ; Protein Binding ; Tissue Distribution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-19
    Description: Microbial sulfate reduction has governed Earth's biogeochemical sulfur cycle for at least 2.5 billion years. However, the enzymatic mechanisms behind this pathway are incompletely understood, particularly for the reduction of sulfite-a key intermediate in the pathway. This critical reaction is performed by DsrAB, a widespread enzyme also involved in other dissimilatory sulfur metabolisms. Using in vitro assays with an archaeal DsrAB, supported with genetic experiments in a bacterial system, we show that the product of sulfite reduction by DsrAB is a protein-based trisulfide, in which a sulfite-derived sulfur is bridging two conserved cysteines of DsrC. Physiological studies also reveal that sulfate reduction rates are determined by cellular levels of DsrC. Dissimilatory sulfate reduction couples the four-electron reduction of the DsrC trisulfide to energy conservation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santos, Andre A -- Venceslau, Sofia S -- Grein, Fabian -- Leavitt, William D -- Dahl, Christiane -- Johnston, David T -- Pereira, Ines A C -- New York, N.Y. -- Science. 2015 Dec 18;350(6267):1541-5. doi: 10.1126/science.aad3558.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Tecnologia Quimica e Biologica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal. ; Department of Earth and Planetary Science, Harvard University, Cambridge, MA, USA. ; Institut fur Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universitat Bonn, Germany. ; Instituto de Tecnologia Quimica e Biologica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal. ipereira@itqb.unl.pt.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26680199" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeal Proteins/chemistry/*metabolism ; Archaeoglobus fulgidus/*enzymology ; Crystallography, X-Ray ; Cysteine/chemistry/metabolism ; *Energy Metabolism ; Oxidation-Reduction ; Proteins/metabolism ; Sulfates/metabolism ; Sulfides/chemistry/*metabolism ; Sulfites/metabolism ; Sulfur/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-02-28
    Description: Polycomb and Trithorax group proteins encode the epigenetic memory of cellular positional identity by establishing inheritable domains of repressive and active chromatin within the Hox clusters. Here we demonstrate that the CCCTC-binding factor (CTCF) functions to insulate these adjacent yet antagonistic chromatin domains during embryonic stem cell differentiation into cervical motor neurons. Deletion of CTCF binding sites within the Hox clusters results in the expansion of active chromatin into the repressive domain. CTCF functions as an insulator by organizing Hox clusters into spatially disjoint domains. Ablation of CTCF binding disrupts topological boundaries such that caudal Hox genes leave the repressed domain and become subject to transcriptional activation. Hence, CTCF is required to insulate facultative heterochromatin from impinging euchromatin to produce discrete positional identities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428148/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428148/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Narendra, Varun -- Rocha, Pedro P -- An, Disi -- Raviram, Ramya -- Skok, Jane A -- Mazzoni, Esteban O -- Reinberg, Danny -- GM-64844/GM/NIGMS NIH HHS/ -- GM086852/GM/NIGMS NIH HHS/ -- GM112192/GM/NIGMS NIH HHS/ -- P30 CA016087/CA/NCI NIH HHS/ -- R01 GM086852/GM/NIGMS NIH HHS/ -- R01 GM112192/GM/NIGMS NIH HHS/ -- R01 HD079682/HD/NICHD NIH HHS/ -- R01HD079682/HD/NICHD NIH HHS/ -- R37-37120/PHS HHS/ -- T32 GM007238/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 27;347(6225):1017-21. doi: 10.1126/science.1262088.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA. ; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA. ; Department of Biology, New York University, New York, NY 10003, USA. ; Department of Biology, New York University, New York, NY 10003, USA. danny.reinberg@nyumc.org eom204@nyu.edu. ; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA. danny.reinberg@nyumc.org eom204@nyu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25722416" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*genetics ; Chromatin/chemistry/genetics/*metabolism ; Dogs ; Embryonic Stem Cells/*cytology ; *Gene Expression Regulation ; *Genes, Homeobox ; Humans ; Mice ; Motor Neurons/*cytology ; Multigene Family ; Neck ; Protein Structure, Tertiary ; Rats ; Repressor Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-11-07
    Description: Dinoflagellates are important components of marine ecosystems and essential coral symbionts, yet little is known about their genomes. We report here on the analysis of a high-quality assembly from the 1180-megabase genome of Symbiodinium kawagutii. We annotated protein-coding genes and identified Symbiodinium-specific gene families. No whole-genome duplication was observed, but instead we found active (retro)transposition and gene family expansion, especially in processes important for successful symbiosis with corals. We also documented genes potentially governing sexual reproduction and cyst formation, novel promoter elements, and a microRNA system potentially regulating gene expression in both symbiont and coral. We found biochemical complementarity between genomes of S. kawagutii and the anthozoan Acropora, indicative of host-symbiont coevolution, providing a resource for studying the molecular basis and evolution of coral symbiosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Senjie -- Cheng, Shifeng -- Song, Bo -- Zhong, Xiao -- Lin, Xin -- Li, Wujiao -- Li, Ling -- Zhang, Yaqun -- Zhang, Huan -- Ji, Zhiliang -- Cai, Meichun -- Zhuang, Yunyun -- Shi, Xinguo -- Lin, Lingxiao -- Wang, Lu -- Wang, Zhaobao -- Liu, Xin -- Yu, Sheng -- Zeng, Peng -- Hao, Han -- Zou, Quan -- Chen, Chengxuan -- Li, Yanjun -- Wang, Ying -- Xu, Chunyan -- Meng, Shanshan -- Xu, Xun -- Wang, Jun -- Yang, Huanming -- Campbell, David A -- Sturm, Nancy R -- Dagenais-Bellefeuille, Steve -- Morse, David -- AI056034/AI/NIAID NIH HHS/ -- AI073806/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 6;350(6261):691-4. doi: 10.1126/science.aad0408.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen 361101, China. Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA. senjie.lin@uconn.edu. ; Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Hong Kong University (HKU)-BGI Bioinformatics Algorithms and Core Technology Research Laboratory, The Computer Science Department, The University of Hong Kong, Hong Kong, China. School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China. ; Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. ; State Key Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen 361101, China. ; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA. ; State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361101, China. ; Bioinformatics Institute, Agency for Science, Technology and Research, Singapore. ; Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia. ; Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia. James D. Watson Institute of Genome Science, Hangzhou, China. ; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA. ; Institut de Recherche en Biologie Vegetale, Departement de Sciences Biologiques, Universite de Montreal, Montreal, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26542574" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa/*physiology ; Biological Evolution ; *Coral Reefs ; Dinoflagellida/*genetics ; *Gene Expression Regulation ; Gene Targeting ; *Genome, Protozoan ; MicroRNAs/genetics ; Symbiosis/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-02-24
    Description: The fleeting lifetimes of the transition states (TSs) of chemical reactions make determination of their three-dimensional structures by diffraction methods a challenge. Here, we used packing interactions within the core of a protein to stabilize the planar TS conformation for rotation around the central carbon-carbon bond of biphenyl so that it could be directly observed by x-ray crystallography. The computational protein design software Rosetta was used to design a pocket within threonyl-transfer RNA synthetase from the thermophile Pyrococcus abyssi that forms complementary van der Waals interactions with a planar biphenyl. This latter moiety was introduced biosynthetically as the side chain of the noncanonical amino acid p-biphenylalanine. Through iterative rounds of computational design and structural analysis, we identified a protein in which the side chain of p-biphenylalanine is trapped in the energetically disfavored, coplanar conformation of the TS of the bond rotation reaction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581533/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581533/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearson, Aaron D -- Mills, Jeremy H -- Song, Yifan -- Nasertorabi, Fariborz -- Han, Gye Won -- Baker, David -- Stevens, Raymond C -- Schultz, Peter G -- 2 R01 GM097206-05/GM/NIGMS NIH HHS/ -- F32 GM099210/GM/NIGMS NIH HHS/ -- F32GM099210/GM/NIGMS NIH HHS/ -- R01 GM097206/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):863-7. doi: 10.1126/science.aaa2424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. ; Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute (HHMI), University of Washington, Seattle, WA 98195, USA. ; Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. schultz@scripps.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700516" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/*analogs & derivatives/chemistry ; Archaeal Proteins/*chemistry ; Biphenyl Compounds/*chemistry ; Computer Simulation ; Computer-Aided Design ; Crystallography, X-Ray ; Entropy ; Models, Chemical ; Protein Structure, Secondary ; Pyrococcus abyssi/*enzymology ; Software ; Threonine-tRNA Ligase/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...