ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-24
    Description: The fleeting lifetimes of the transition states (TSs) of chemical reactions make determination of their three-dimensional structures by diffraction methods a challenge. Here, we used packing interactions within the core of a protein to stabilize the planar TS conformation for rotation around the central carbon-carbon bond of biphenyl so that it could be directly observed by x-ray crystallography. The computational protein design software Rosetta was used to design a pocket within threonyl-transfer RNA synthetase from the thermophile Pyrococcus abyssi that forms complementary van der Waals interactions with a planar biphenyl. This latter moiety was introduced biosynthetically as the side chain of the noncanonical amino acid p-biphenylalanine. Through iterative rounds of computational design and structural analysis, we identified a protein in which the side chain of p-biphenylalanine is trapped in the energetically disfavored, coplanar conformation of the TS of the bond rotation reaction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581533/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581533/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pearson, Aaron D -- Mills, Jeremy H -- Song, Yifan -- Nasertorabi, Fariborz -- Han, Gye Won -- Baker, David -- Stevens, Raymond C -- Schultz, Peter G -- 2 R01 GM097206-05/GM/NIGMS NIH HHS/ -- F32 GM099210/GM/NIGMS NIH HHS/ -- F32GM099210/GM/NIGMS NIH HHS/ -- R01 GM097206/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):863-7. doi: 10.1126/science.aaa2424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. ; Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute (HHMI), University of Washington, Seattle, WA 98195, USA. ; Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. schultz@scripps.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700516" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/*analogs & derivatives/chemistry ; Archaeal Proteins/*chemistry ; Biphenyl Compounds/*chemistry ; Computer Simulation ; Computer-Aided Design ; Crystallography, X-Ray ; Entropy ; Models, Chemical ; Protein Structure, Secondary ; Pyrococcus abyssi/*enzymology ; Software ; Threonine-tRNA Ligase/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...