ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-30
    Description: The self-assembly of proteins into highly ordered nanoscale architectures is a hallmark of biological systems. The sophisticated functions of these molecular machines have inspired the development of methods to engineer self-assembling protein nanostructures; however, the design of multi-component protein nanomaterials with high accuracy remains an outstanding challenge. Here we report a computational method for designing protein nanomaterials in which multiple copies of two distinct subunits co-assemble into a specific architecture. We use the method to design five 24-subunit cage-like protein nanomaterials in two distinct symmetric architectures and experimentally demonstrate that their structures are in close agreement with the computational design models. The accuracy of the method and the number and variety of two-component materials that it makes accessible suggest a route to the construction of functional protein nanomaterials tailored to specific applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137318/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137318/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, Neil P -- Bale, Jacob B -- Sheffler, William -- McNamara, Dan E -- Gonen, Shane -- Gonen, Tamir -- Yeates, Todd O -- Baker, David -- T32 GM067555/GM/NIGMS NIH HHS/ -- T32GM067555/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 5;510(7503):103-8. doi: 10.1038/nature13404. Epub 2014 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA [3]. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington 98195, USA [3]. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2]. ; UCLA Department of Chemistry and Biochemistry, Los Angeles, California 90095, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA. ; Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA. ; 1] UCLA Department of Chemistry and Biochemistry, Los Angeles, California 90095, USA [2] UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California 90095, USA [3] UCLA Molecular Biology Institute, Los Angeles, California 90095, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA [3] Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870237" target="_blank"〉PubMed〈/a〉
    Keywords: Computer Simulation ; Crystallography, X-Ray ; Drug Design ; Models, Molecular ; Nanostructures/*chemistry/ultrastructure ; Protein Subunits/chemistry ; Proteins/*chemistry/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-11
    Description: The mechanisms by which mucosal homeostasis is maintained are of central importance to inflammatory bowel disease. Critical to these processes is the intestinal epithelial cell (IEC), which regulates immune responses at the interface between the commensal microbiota and the host. CD1d presents self and microbial lipid antigens to natural killer T (NKT) cells, which are involved in the pathogenesis of colitis in animal models and human inflammatory bowel disease. As CD1d crosslinking on model IECs results in the production of the important regulatory cytokine interleukin (IL)-10 (ref. 9), decreased epithelial CD1d expression--as observed in inflammatory bowel disease--may contribute substantially to intestinal inflammation. Here we show in mice that whereas bone-marrow-derived CD1d signals contribute to NKT-cell-mediated intestinal inflammation, engagement of epithelial CD1d elicits protective effects through the activation of STAT3 and STAT3-dependent transcription of IL-10, heat shock protein 110 (HSP110; also known as HSP105), and CD1d itself. All of these epithelial elements are critically involved in controlling CD1d-mediated intestinal inflammation. This is demonstrated by severe NKT-cell-mediated colitis upon IEC-specific deletion of IL-10, CD1d, and its critical regulator microsomal triglyceride transfer protein (MTP), as well as deletion of HSP110 in the radioresistant compartment. Our studies thus uncover a novel pathway of IEC-dependent regulation of mucosal homeostasis and highlight a critical role of IL-10 in the intestinal epithelium, with broad implications for diseases such as inflammatory bowel disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132962/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132962/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olszak, Torsten -- Neves, Joana F -- Dowds, C Marie -- Baker, Kristi -- Glickman, Jonathan -- Davidson, Nicholas O -- Lin, Chyuan-Sheng -- Jobin, Christian -- Brand, Stephan -- Sotlar, Karl -- Wada, Koichiro -- Katayama, Kazufumi -- Nakajima, Atsushi -- Mizuguchi, Hiroyuki -- Kawasaki, Kunito -- Nagata, Kazuhiro -- Muller, Werner -- Snapper, Scott B -- Schreiber, Stefan -- Kaser, Arthur -- Zeissig, Sebastian -- Blumberg, Richard S -- 260961/European Research Council/International -- AI50950/AI/NIAID NIH HHS/ -- DK0034854/DK/NIDDK NIH HHS/ -- DK034854/DK/NIDDK NIH HHS/ -- DK044319/DK/NIDDK NIH HHS/ -- DK051362/DK/NIDDK NIH HHS/ -- DK053056/DK/NIDDK NIH HHS/ -- DK088199/DK/NIDDK NIH HHS/ -- DK56260/DK/NIDDK NIH HHS/ -- HL38180/HL/NHLBI NIH HHS/ -- HL59561/HL/NHLBI NIH HHS/ -- P30 DK034854/DK/NIDDK NIH HHS/ -- P30 DK052574/DK/NIDDK NIH HHS/ -- P30CA013696/CA/NCI NIH HHS/ -- P30DK52574/DK/NIDDK NIH HHS/ -- R01 DK044319/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 May 22;509(7501):497-502. doi: 10.1038/nature13150. Epub 2014 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2]. ; 1] Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany [2]. ; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; GI Pathology, Miraca Life Sciences, Newton, Massachusetts 02464, USA. ; Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA. ; Department of Medicine, Department of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida 32611, USA. ; Department of Medicine II-Grosshadern, Ludwig Maximilians University, Munich 81377, Germany. ; Institute of Pathology, Ludwig Maximilians University, Munich 80337, Germany. ; Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan. ; Gastroenterology Division, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0027, Japan. ; Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan. ; Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan. ; Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK. ; 1] Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, USA. ; Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany. ; Division of Gastroenterology, Addenbrooke Hospital, University of Cambridge, Cambridge CB2 0QQ, UK. ; 1] Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24717441" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD1d/*immunology ; Carrier Proteins/metabolism ; Colitis/immunology/pathology ; Disease Models, Animal ; Epithelial Cells/*immunology/metabolism ; Female ; HSP110 Heat-Shock Proteins/genetics/metabolism ; Humans ; Immunity, Mucosal/*immunology ; Inflammation/immunology/pathology ; Inflammatory Bowel Diseases/immunology/pathology ; Interleukin-10/genetics/*immunology ; Intestinal Mucosa/*cytology/*immunology ; Male ; Mice ; Natural Killer T-Cells/immunology/metabolism ; Oxazolone ; STAT3 Transcription Factor/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-07
    Description: Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Correia, Bruno E -- Bates, John T -- Loomis, Rebecca J -- Baneyx, Gretchen -- Carrico, Chris -- Jardine, Joseph G -- Rupert, Peter -- Correnti, Colin -- Kalyuzhniy, Oleksandr -- Vittal, Vinayak -- Connell, Mary J -- Stevens, Eric -- Schroeter, Alexandria -- Chen, Man -- Macpherson, Skye -- Serra, Andreia M -- Adachi, Yumiko -- Holmes, Margaret A -- Li, Yuxing -- Klevit, Rachel E -- Graham, Barney S -- Wyatt, Richard T -- Baker, David -- Strong, Roland K -- Crowe, James E Jr -- Johnson, Philip R -- Schief, William R -- 1R01AI102766-01A1/AI/NIAID NIH HHS/ -- 1UM1AI100663/AI/NIAID NIH HHS/ -- 2T32GM007270/GM/NIGMS NIH HHS/ -- 5R21AI088554/AI/NIAID NIH HHS/ -- P01 AI094419/AI/NIAID NIH HHS/ -- P01AI094419/AI/NIAID NIH HHS/ -- P30 AI036214/AI/NIAID NIH HHS/ -- P30 AI045008/AI/NIAID NIH HHS/ -- P30AI36214/AI/NIAID NIH HHS/ -- R01 AI102766/AI/NIAID NIH HHS/ -- R21 AI088554/AI/NIAID NIH HHS/ -- T32 CA080416/CA/NCI NIH HHS/ -- T32 GM007270/GM/NIGMS NIH HHS/ -- T32CA080416/CA/NCI NIH HHS/ -- U54 AI 005714/AI/NIAID NIH HHS/ -- U54 AI057141/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2014 Mar 13;507(7491):201-6. doi: 10.1038/nature12966. Epub 2014 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] PhD Program in Computational Biology, Instituto Gulbenkian Ciencia and Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal [3] Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA. ; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA. ; The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania 19104, USA. ; Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA [3] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [4] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [3] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA [2]. ; 1] Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA [2] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [3] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA [2] Department of Pathology, Microbiology and Immunology, Vanderbilt Medical Center, Nashville, Tennessee 37232, USA [3] Department of Pediatrics, Vanderbilt Medical Center, Nashville, Tennessee 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499818" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Antibodies, Monoclonal/analysis/immunology ; Antibodies, Neutralizing/analysis/immunology ; Antibodies, Viral/analysis/immunology ; Antigens, Viral/chemistry/immunology ; Crystallography, X-Ray ; *Drug Design ; Enzyme-Linked Immunosorbent Assay ; Epitopes/*chemistry/*immunology ; Macaca mulatta/immunology ; Male ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Neutralization Tests ; Protein Conformation ; *Protein Stability ; Respiratory Syncytial Virus Vaccines/*chemistry/*immunology ; Respiratory Syncytial Viruses/chemistry/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-28
    Description: Only a very small fraction of long noncoding RNAs (lncRNAs) are well characterized. The evolutionary history of lncRNAs can provide insights into their functionality, but the absence of lncRNA annotations in non-model organisms has precluded comparative analyses. Here we present a large-scale evolutionary study of lncRNA repertoires and expression patterns, in 11 tetrapod species. We identify approximately 11,000 primate-specific lncRNAs and 2,500 highly conserved lncRNAs, including approximately 400 genes that are likely to have originated more than 300 million years ago. We find that lncRNAs, in particular ancient ones, are in general actively regulated and may function predominantly in embryonic development. Most lncRNAs evolve rapidly in terms of sequence and expression levels, but tissue specificities are often conserved. We compared expression patterns of homologous lncRNA and protein-coding families across tetrapods to reconstruct an evolutionarily conserved co-expression network. This network suggests potential functions for lncRNAs in fundamental processes such as spermatogenesis and synaptic transmission, but also in more specific mechanisms such as placenta development through microRNA production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Necsulea, Anamaria -- Soumillon, Magali -- Warnefors, Maria -- Liechti, Angelica -- Daish, Tasman -- Zeller, Ulrich -- Baker, Julie C -- Grutzner, Frank -- Kaessmann, Henrik -- 099175/Z/12/Z/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2014 Jan 30;505(7485):635-40. doi: 10.1038/nature12943. Epub 2014 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland [2] Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland [3] Laboratory of Developmental Genomics, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland (A.N.); Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA, and Broad Institute, Cambridge, Massachusetts 02142, USA (M.S.). ; 1] Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland [2] Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland. ; The Robinson Institute, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia. ; Department of Systematic Zoology, Faculty of Agriculture and Horticulture, Humboldt University Berlin, 10099 Berlin, Germany. ; Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463510" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anura/genetics ; Chickens/genetics ; Conserved Sequence/genetics ; *Evolution, Molecular ; Gene Expression Regulation, Developmental/genetics ; Genomics ; Humans ; Mice ; MicroRNAs/genetics ; Multigene Family ; Primates/genetics ; Proteins/genetics ; RNA Precursors/genetics ; RNA, Long Noncoding/*genetics ; Transcriptome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-12
    Description: Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation approximately 5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249732/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249732/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carbone, Lucia -- Harris, R Alan -- Gnerre, Sante -- Veeramah, Krishna R -- Lorente-Galdos, Belen -- Huddleston, John -- Meyer, Thomas J -- Herrero, Javier -- Roos, Christian -- Aken, Bronwen -- Anaclerio, Fabio -- Archidiacono, Nicoletta -- Baker, Carl -- Barrell, Daniel -- Batzer, Mark A -- Beal, Kathryn -- Blancher, Antoine -- Bohrson, Craig L -- Brameier, Markus -- Campbell, Michael S -- Capozzi, Oronzo -- Casola, Claudio -- Chiatante, Giorgia -- Cree, Andrew -- Damert, Annette -- de Jong, Pieter J -- Dumas, Laura -- Fernandez-Callejo, Marcos -- Flicek, Paul -- Fuchs, Nina V -- Gut, Ivo -- Gut, Marta -- Hahn, Matthew W -- Hernandez-Rodriguez, Jessica -- Hillier, LaDeana W -- Hubley, Robert -- Ianc, Bianca -- Izsvak, Zsuzsanna -- Jablonski, Nina G -- Johnstone, Laurel M -- Karimpour-Fard, Anis -- Konkel, Miriam K -- Kostka, Dennis -- Lazar, Nathan H -- Lee, Sandra L -- Lewis, Lora R -- Liu, Yue -- Locke, Devin P -- Mallick, Swapan -- Mendez, Fernando L -- Muffato, Matthieu -- Nazareth, Lynne V -- Nevonen, Kimberly A -- O'Bleness, Majesta -- Ochis, Cornelia -- Odom, Duncan T -- Pollard, Katherine S -- Quilez, Javier -- Reich, David -- Rocchi, Mariano -- Schumann, Gerald G -- Searle, Stephen -- Sikela, James M -- Skollar, Gabriella -- Smit, Arian -- Sonmez, Kemal -- ten Hallers, Boudewijn -- Terhune, Elizabeth -- Thomas, Gregg W C -- Ullmer, Brygg -- Ventura, Mario -- Walker, Jerilyn A -- Wall, Jeffrey D -- Walter, Lutz -- Ward, Michelle C -- Wheelan, Sarah J -- Whelan, Christopher W -- White, Simon -- Wilhelm, Larry J -- Woerner, August E -- Yandell, Mark -- Zhu, Baoli -- Hammer, Michael F -- Marques-Bonet, Tomas -- Eichler, Evan E -- Fulton, Lucinda -- Fronick, Catrina -- Muzny, Donna M -- Warren, Wesley C -- Worley, Kim C -- Rogers, Jeffrey -- Wilson, Richard K -- Gibbs, Richard A -- 095908/Wellcome Trust/United Kingdom -- 15603/Cancer Research UK/United Kingdom -- 260372/European Research Council/International -- HG002385/HG/NHGRI NIH HHS/ -- P30 AA019355/AA/NIAAA NIH HHS/ -- P30CA006973/CA/NCI NIH HHS/ -- P51 RR000163/RR/NCRR NIH HHS/ -- R01 GM059290/GM/NIGMS NIH HHS/ -- R01 GM59290/GM/NIGMS NIH HHS/ -- R01 HG002385/HG/NHGRI NIH HHS/ -- R01 HG002939/HG/NHGRI NIH HHS/ -- R01 HG005226/HG/NHGRI NIH HHS/ -- R01 MH081203/MH/NIMH NIH HHS/ -- R01_HG005226/HG/NHGRI NIH HHS/ -- T15 LM007088/LM/NLM NIH HHS/ -- U41 HG007497/HG/NHGRI NIH HHS/ -- U41 HG007497-01/HG/NHGRI NIH HHS/ -- U41HG007234/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- U54HG003273/HG/NHGRI NIH HHS/ -- WT095908/Wellcome Trust/United Kingdom -- WT098051/Wellcome Trust/United Kingdom -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Sep 11;513(7517):195-201. doi: 10.1038/nature13679.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Oregon Health &Science University, Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road Portland, Oregon 97239, USA. [2] Oregon National Primate Research Center, Division of Neuroscience, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA. [3] Oregon Health &Science University, Department of Molecular &Medical Genetics, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. [4] Oregon Health &Science University, Bioinformatics and Computational Biology Division, Department of Medical Informatics &Clinical Epidemiology, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. ; Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, Texas 77030, USA. ; Nabsys, 60 Clifford Street, Providence, Rhode Island 02903, USA. ; 1] University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA. [2] Stony Brook University, Department of Ecology and Evolution, Stony Brook, New York 11790, USA. ; IBE, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain. ; 1] Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA. [2] Howard Hughes Medical Institute, 1705 NE Pacific Street, Seattle, Washington 98195, USA. ; Oregon Health &Science University, Department of Behavioral Neuroscience, 3181 SW Sam Jackson Park Road Portland, Oregon 97239, USA. ; 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] The Genome Analysis Centre, Norwich Research Park, Norwich NR4 7UH, UK. [3] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.). ; Leibniz Institute for Primate Research, Gene Bank of Primates, German Primate Center, Gottingen 37077, Germany. ; 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; University of Bari, Department of Biology, Via Orabona 4, 70125, Bari, Italy. ; Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA. ; Louisiana State University, Department of Biological Sciences, Baton Rouge, Louisiana 70803, USA. ; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; University of Paul Sabatier, Toulouse 31062, France. ; The Johns Hopkins University School of Medicine, Department of Oncology, Division of Biostatistics and Bioinformatics, Baltimore, Maryland 21205, USA. ; University of Utah, Salt Lake City, Utah 84112, USA. ; Texas A&M University, Department of Ecosystem Science and Management, College Station, Texas 77843, USA. ; Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Babes-Bolyai-University, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Cluj-Napoca 400084, Romania. ; Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, California 94609, USA. ; University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, Colorado 80045, USA. ; Max Delbruck Center for Molecular Medicine, Berlin 13125, Germany. ; Centro Nacional de Analisis Genomico (CNAG), Parc Cientific de Barcelona, Barcelona 08028, Spain. ; Indiana University, School of Informatics and Computing, Bloomington, Indiana 47408, USA. ; The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA. ; Institute for Systems Biology, Seattle, Washington 98109-5234, USA. ; The Pennsylvania State University, Department of Anthropology, University Park, Pennsylvania 16802, USA. ; University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA. ; University of Pittsburgh School of Medicine, Department of Developmental Biology, Department of Computational and Systems Biology, Pittsburg, Pennsylvania 15261, USA. ; Oregon Health &Science University, Bioinformatics and Computational Biology Division, Department of Medical Informatics &Clinical Epidemiology, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. ; 1] The Genome Center at Washington University, Washington University School of Medicine, 4444 Forest Park Avenue, Saint Louis, Missouri 63108, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.). ; Harvard Medical School, Department of Genetics, Boston, Massachusetts 02115, USA. ; 1] University of Arizona, ARL Division of Biotechnology, Tucson, Arizona 85721, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.). ; Oregon National Primate Research Center, Division of Neuroscience, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA. ; 1] European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] University of Cambridge, Cancer Research UK-Cambridge Institute, Cambridge CB2 0RE, UK. ; 1] University of California, Gladstone Institutes, San Francisco, California 94158-226, USA. [2] Institute for Human Genetics, University of California, San Francisco, California 94143-0794, USA. [3] Division of Biostatistics, University of California, San Francisco, California 94143-0794, USA. ; Paul Ehrlich Institute, Division of Medical Biotechnology, 63225 Langen, Germany. ; European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; Gibbon Conservation Center, 19100 Esguerra Rd, Santa Clarita, California 91350, USA. ; 1] Oregon Health &Science University, Bioinformatics and Computational Biology Division, Department of Medical Informatics &Clinical Epidemiology, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. [2] Oregon Health &Science University, Center for Spoken Language Understanding, Institute on Development and Disability, Portland, Oregon 97239, USA. ; 1] Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, California 94609, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.). ; Louisiana State University, School of Electrical Engineering and Computer Science, Baton Rouge, Louisiana 70803, USA. ; 1] Institute for Human Genetics, University of California, San Francisco, California 94143-0794, USA. [2] Division of Biostatistics, University of California, San Francisco, California 94143-0794, USA. ; 1] University of Cambridge, Cancer Research UK-Cambridge Institute, Cambridge CB2 0RE, UK. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.). ; 1] Oregon Health &Science University, Center for Spoken Language Understanding, Institute on Development and Disability, Portland, Oregon 97239, USA. [2] Bill Lyons Informatics Center, UCL Cancer Institute, University College London, London WC1E 6DD, UK (J.He); Seven Bridges Genomics, Cambridge, Massachusetts 02138, USA (D.P.L.); Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA (F.L.M.); BioNano Genomics, San Diego, California 92121, USA (B.t.H.); University of Chicago, Department of Human Genetics, Chicago, Illinois 60637, USA (M.C.W.); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02138, USA (C.W.W.); The CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (B.Z.). ; 1] IBE, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain. [2] Centro Nacional de Analisis Genomico (CNAG), Parc Cientific de Barcelona, Barcelona 08028, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25209798" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Evolution, Molecular ; Genome/*genetics ; Hominidae/classification/genetics ; Humans ; Hylobates/*classification/*genetics ; *Karyotype ; Molecular Sequence Data ; *Phylogeny ; Retroelements/genetics ; Selection, Genetic ; Transcription Termination, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...