ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Models, Molecular  (40)
  • Nature Publishing Group (NPG)  (40)
  • 2010-2014  (40)
  • 1985-1989
  • 2014  (40)
Collection
Publisher
Years
  • 2010-2014  (40)
  • 1985-1989
Year
  • 1
    Publication Date: 2014-09-16
    Description: The Ras-like GTPases RalA and RalB are important drivers of tumour growth and metastasis. Chemicals that block Ral function would be valuable as research tools and for cancer therapeutics. Here we used protein structure analysis and virtual screening to identify drug-like molecules that bind to a site on the GDP-bound form of Ral. The compounds RBC6, RBC8 and RBC10 inhibited the binding of Ral to its effector RALBP1, as well as inhibiting Ral-mediated cell spreading of murine embryonic fibroblasts and anchorage-independent growth of human cancer cell lines. The binding of the RBC8 derivative BQU57 to RalB was confirmed by isothermal titration calorimetry, surface plasmon resonance and (1)H-(15)N transverse relaxation-optimized spectroscopy (TROSY) NMR spectroscopy. RBC8 and BQU57 show selectivity for Ral relative to the GTPases Ras and RhoA and inhibit tumour xenograft growth to a similar extent to the depletion of Ral using RNA interference. Our results show the utility of structure-based discovery for the development of therapeutics for Ral-dependent cancers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351747/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351747/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Chao -- Liu, Degang -- Li, Liwei -- Wempe, Michael F -- Guin, Sunny -- Khanna, May -- Meier, Jeremy -- Hoffman, Brenton -- Owens, Charles -- Wysoczynski, Christina L -- Nitz, Matthew D -- Knabe, William E -- Ahmed, Mansoor -- Brautigan, David L -- Paschal, Bryce M -- Schwartz, Martin A -- Jones, David N M -- Ross, David -- Meroueh, Samy O -- Theodorescu, Dan -- CA075115/CA/NCI NIH HHS/ -- CA091846/CA/NCI NIH HHS/ -- CA104106/CA/NCI NIH HHS/ -- GM47214/GM/NIGMS NIH HHS/ -- P01 CA104106/CA/NCI NIH HHS/ -- P30 CA044579/CA/NCI NIH HHS/ -- P30 CA046934/CA/NCI NIH HHS/ -- P50 CA091846/CA/NCI NIH HHS/ -- R01 CA075115/CA/NCI NIH HHS/ -- R01 CA143971/CA/NCI NIH HHS/ -- T32 GM007635/GM/NIGMS NIH HHS/ -- UL1 TR001082/TR/NCATS NIH HHS/ -- UL1TR001082/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Nov 20;515(7527):443-7. doi: 10.1038/nature13713. Epub 2014 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, University of Colorado, Aurora, Colorado 80045, USA. ; Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045, USA. ; Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, USA. ; Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA. ; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA. ; 1] Department of Cardiology, Yale University, New Haven, Connecticut 06511, USA [2] Department of Cell Biology, Yale University, New Haven, Connecticut 06511, USA. ; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA. ; 1] Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [2] Department of Chemistry and Chemical Biology, Indiana University - Purdue University, Indianapolis, Indiana 46202, USA. ; 1] Department of Surgery, University of Colorado, Aurora, Colorado 80045, USA [2] Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA [3] University of Colorado Comprehensive Cancer Center, Aurora, Colorado 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25219851" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/metabolism ; Animals ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Computer Simulation ; *Drug Screening Assays, Antitumor ; Female ; GTPase-Activating Proteins/metabolism ; Humans ; Mice ; Models, Molecular ; *Molecular Targeted Therapy ; Neoplasms/drug therapy/enzymology/metabolism/pathology ; Protein Binding/drug effects ; Signal Transduction/drug effects ; Small Molecule Libraries/*chemistry/*pharmacology ; Substrate Specificity ; Xenograft Model Antitumor Assays ; ral GTP-Binding Proteins/*antagonists & inhibitors/chemistry/metabolism ; ras Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-03-05
    Description: Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395007/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395007/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doria-Rose, Nicole A -- Schramm, Chaim A -- Gorman, Jason -- Moore, Penny L -- Bhiman, Jinal N -- DeKosky, Brandon J -- Ernandes, Michael J -- Georgiev, Ivelin S -- Kim, Helen J -- Pancera, Marie -- Staupe, Ryan P -- Altae-Tran, Han R -- Bailer, Robert T -- Crooks, Ema T -- Cupo, Albert -- Druz, Aliaksandr -- Garrett, Nigel J -- Hoi, Kam H -- Kong, Rui -- Louder, Mark K -- Longo, Nancy S -- McKee, Krisha -- Nonyane, Molati -- O'Dell, Sijy -- Roark, Ryan S -- Rudicell, Rebecca S -- Schmidt, Stephen D -- Sheward, Daniel J -- Soto, Cinque -- Wibmer, Constantinos Kurt -- Yang, Yongping -- Zhang, Zhenhai -- NISC Comparative Sequencing Program -- Mullikin, James C -- Binley, James M -- Sanders, Rogier W -- Wilson, Ian A -- Moore, John P -- Ward, Andrew B -- Georgiou, George -- Williamson, Carolyn -- Abdool Karim, Salim S -- Morris, Lynn -- Kwong, Peter D -- Shapiro, Lawrence -- Mascola, John R -- P01 AI082362/AI/NIAID NIH HHS/ -- R01 AI100790/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 May 1;509(7498):55-62. doi: 10.1038/nature13036. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA [2]. ; 1] Department of Biochemistry, Columbia University, New York, New York 10032, USA [2]. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa [2] Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa [3] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa [4]. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa [2] Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa. ; Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [3] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA. ; Torrey Pines Institute, San Diego, California 92037, USA. ; Weill Medical College of Cornell University, New York, New York 10065, USA. ; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa. ; Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA. ; Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa. ; Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and NHLS, Cape Town 7701, South Africa. ; Department of Biochemistry, Columbia University, New York, New York 10032, USA. ; 1] NISC Comparative Sequencing program, National Institutes of Health, Bethesda, Maryland 20892, USA [2] NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Medical Microbiology, Academic Medical Center, Amsterdam 1105 AZ, Netherlands. ; 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [3] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [4] Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA [2] Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA [3] Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA. ; 1] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa [2] Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and NHLS, Cape Town 7701, South Africa. ; 1] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa [2] Department of Epidemiology, Columbia University, New York, New York 10032, USA. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa [2] Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa [3] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa. ; 1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Department of Biochemistry, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590074" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/immunology ; Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/genetics/*immunology/isolation & purification ; Antibody Affinity/genetics/immunology ; Antigens, CD4/immunology/metabolism ; B-Lymphocytes/cytology/immunology/metabolism ; Binding Sites/immunology ; Cell Lineage ; Complementarity Determining Regions/chemistry/genetics/immunology ; Epitope Mapping ; Epitopes, B-Lymphocyte/chemistry/immunology ; Evolution, Molecular ; HIV Antibodies/chemistry/genetics/*immunology/isolation & purification ; HIV Envelope Protein gp160/*chemistry/*immunology ; HIV Infections/immunology ; HIV-1/chemistry/immunology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Neutralization Tests ; Protein Structure, Tertiary ; Somatic Hypermutation, Immunoglobulin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-20
    Description: Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol beta, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312183/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4312183/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freudenthal, Bret D -- Beard, William A -- Perera, Lalith -- Shock, David D -- Kim, Taejin -- Schlick, Tamar -- Wilson, Samuel H -- 1U19CA105010/CA/NCI NIH HHS/ -- U19 CA177547/CA/NCI NIH HHS/ -- Z01-ES050158/ES/NIEHS NIH HHS/ -- Z01-ES050161/ES/NIEHS NIH HHS/ -- ZIA ES050158-18/Intramural NIH HHS/ -- ZIA ES050159-18/Intramural NIH HHS/ -- ZIC-ES043010/ES/NIEHS NIH HHS/ -- England -- Nature. 2015 Jan 29;517(7536):635-9. doi: 10.1038/nature13886. Epub 2014 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, North Carolina 27709-2233, USA. ; 1] Department of Chemistry, New York University, and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 10th Floor Silver Center, 100 Washington Square East, New York, New York 10003, USA [2] Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409153" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/chemistry/metabolism ; Base Pairing ; Catalytic Domain ; Crystallography, X-Ray ; Cytosine/chemistry/metabolism ; Cytotoxins/chemistry/*metabolism/toxicity ; DNA/biosynthesis/chemistry ; *DNA Damage ; DNA Polymerase beta/*chemistry/*metabolism ; DNA Repair ; DNA Replication ; Deoxyguanine Nucleotides/chemistry/*metabolism/*toxicity ; Guanine/analogs & derivatives/chemistry/metabolism ; Humans ; Hydrogen Bonding ; Kinetics ; Models, Molecular ; Molecular Conformation ; *Mutagenesis ; Neoplasms/enzymology/genetics ; Oxidation-Reduction ; Oxidative Stress ; Static Electricity ; Substrate Specificity ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-05-30
    Description: The self-assembly of proteins into highly ordered nanoscale architectures is a hallmark of biological systems. The sophisticated functions of these molecular machines have inspired the development of methods to engineer self-assembling protein nanostructures; however, the design of multi-component protein nanomaterials with high accuracy remains an outstanding challenge. Here we report a computational method for designing protein nanomaterials in which multiple copies of two distinct subunits co-assemble into a specific architecture. We use the method to design five 24-subunit cage-like protein nanomaterials in two distinct symmetric architectures and experimentally demonstrate that their structures are in close agreement with the computational design models. The accuracy of the method and the number and variety of two-component materials that it makes accessible suggest a route to the construction of functional protein nanomaterials tailored to specific applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137318/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4137318/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, Neil P -- Bale, Jacob B -- Sheffler, William -- McNamara, Dan E -- Gonen, Shane -- Gonen, Tamir -- Yeates, Todd O -- Baker, David -- T32 GM067555/GM/NIGMS NIH HHS/ -- T32GM067555/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 5;510(7503):103-8. doi: 10.1038/nature13404. Epub 2014 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA [3]. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington 98195, USA [3]. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2]. ; UCLA Department of Chemistry and Biochemistry, Los Angeles, California 90095, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA. ; Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA. ; 1] UCLA Department of Chemistry and Biochemistry, Los Angeles, California 90095, USA [2] UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California 90095, USA [3] UCLA Molecular Biology Institute, Los Angeles, California 90095, USA. ; 1] Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA [2] Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA [3] Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870237" target="_blank"〉PubMed〈/a〉
    Keywords: Computer Simulation ; Crystallography, X-Ray ; Drug Design ; Models, Molecular ; Nanostructures/*chemistry/ultrastructure ; Protein Subunits/chemistry ; Proteins/*chemistry/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-06-27
    Description: Polyketide natural products constitute a broad class of compounds with diverse structural features and biological activities. Their biosynthetic machinery, represented by type I polyketide synthases (PKSs), has an architecture in which successive modules catalyse two-carbon linear extensions and keto-group processing reactions on intermediates covalently tethered to carrier domains. Here we used electron cryo-microscopy to determine sub-nanometre-resolution three-dimensional reconstructions of a full-length PKS module from the bacterium Streptomyces venezuelae that revealed an unexpectedly different architecture compared to the homologous dimeric mammalian fatty acid synthase. A single reaction chamber provides access to all catalytic sites for the intramodule carrier domain. In contrast, the carrier from the preceding module uses a separate entrance outside the reaction chamber to deliver the upstream polyketide intermediate for subsequent extension and modification. This study reveals for the first time, to our knowledge, the structural basis for both intramodule and intermodule substrate transfer in polyketide synthases, and establishes a new model for molecular dissection of these multifunctional enzyme systems.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4278352/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4278352/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dutta, Somnath -- Whicher, Jonathan R -- Hansen, Douglas A -- Hale, Wendi A -- Chemler, Joseph A -- Congdon, Grady R -- Narayan, Alison R H -- Hakansson, Kristina -- Sherman, David H -- Smith, Janet L -- Skiniotis, Georgios -- 1R21CA138331-01A1/CA/NCI NIH HHS/ -- DK042303/DK/NIDDK NIH HHS/ -- DK090165/DK/NIDDK NIH HHS/ -- GM076477/GM/NIGMS NIH HHS/ -- R01 DK042303/DK/NIDDK NIH HHS/ -- R01 DK090165/DK/NIDDK NIH HHS/ -- R01 GM076477/GM/NIGMS NIH HHS/ -- T32 GM008597/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Jun 26;510(7506):512-7. doi: 10.1038/nature13423. Epub 2014 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2]. ; 1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Chemical Biology Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA [3]. ; 1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA [3] Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA [4] Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24965652" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Catalytic Domain ; Cryoelectron Microscopy ; Fatty Acid Synthases/chemistry ; Macrolides/metabolism ; Models, Molecular ; Polyketide Synthases/*chemistry/metabolism/*ultrastructure ; Streptomyces/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-22
    Description: Clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, is characterized by elevated glycogen levels and fat deposition. These consistent metabolic alterations are associated with normoxic stabilization of hypoxia-inducible factors (HIFs) secondary to von Hippel-Lindau (VHL) mutations that occur in over 90% of ccRCC tumours. However, kidney-specific VHL deletion in mice fails to elicit ccRCC-specific metabolic phenotypes and tumour formation, suggesting that additional mechanisms are essential. Recent large-scale sequencing analyses revealed the loss of several chromatin remodelling enzymes in a subset of ccRCC (these included polybromo-1, SET domain containing 2 and BRCA1-associated protein-1, among others), indicating that epigenetic perturbations are probably important contributors to the natural history of this disease. Here we used an integrative approach comprising pan-metabolomic profiling and metabolic gene set analysis and determined that the gluconeogenic enzyme fructose-1,6-bisphosphatase 1 (FBP1) is uniformly depleted in over six hundred ccRCC tumours examined. Notably, the human FBP1 locus resides on chromosome 9q22, the loss of which is associated with poor prognosis for ccRCC patients. Our data further indicate that FBP1 inhibits ccRCC progression through two distinct mechanisms. First, FBP1 antagonizes glycolytic flux in renal tubular epithelial cells, the presumptive ccRCC cell of origin, thereby inhibiting a potential Warburg effect. Second, in pVHL (the protein encoded by the VHL gene)-deficient ccRCC cells, FBP1 restrains cell proliferation, glycolysis and the pentose phosphate pathway in a catalytic-activity-independent manner, by inhibiting nuclear HIF function via direct interaction with the HIF inhibitory domain. This unique dual function of the FBP1 protein explains its ubiquitous loss in ccRCC, distinguishing FBP1 from previously identified tumour suppressors that are not consistently mutated in all tumours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4162811/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4162811/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Bo -- Qiu, Bo -- Lee, David S M -- Walton, Zandra E -- Ochocki, Joshua D -- Mathew, Lijoy K -- Mancuso, Anthony -- Gade, Terence P F -- Keith, Brian -- Nissim, Itzhak -- Simon, M Celeste -- CA104838/CA/NCI NIH HHS/ -- DK053761/DK/NIDDK NIH HHS/ -- F30 CA177106/CA/NCI NIH HHS/ -- F32 CA192758/CA/NCI NIH HHS/ -- P01 CA104838/CA/NCI NIH HHS/ -- P30 CA016520/CA/NCI NIH HHS/ -- R01 DK053761/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Sep 11;513(7517):251-5. doi: 10.1038/nature13557. Epub 2014 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; 1] Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Howard Hughes Medical Institute, Philadelphia, Pennsylvania 19104, USA. ; 1] Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; 1] Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [3] Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; 1] Department of Pediatrics, Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Division of Child Development and Metabolic Disease, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA. ; 1] Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Howard Hughes Medical Institute, Philadelphia, Pennsylvania 19104, USA [3] Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043030" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; Carcinoma, Renal Cell/*enzymology/genetics/physiopathology ; Cell Line ; Cell Line, Tumor ; Cell Proliferation ; Disease Progression ; Epithelial Cells/metabolism ; Fructose-Bisphosphatase/chemistry/genetics/*metabolism ; Glycolysis ; Humans ; Kidney Neoplasms/*enzymology/genetics/physiopathology ; Models, Molecular ; NADP/metabolism ; Protein Structure, Tertiary ; Swine
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-06-27
    Description: The polyketide synthase (PKS) mega-enzyme assembly line uses a modular architecture to synthesize diverse and bioactive natural products that often constitute the core structures or complete chemical entities for many clinically approved therapeutic agents. The architecture of a full-length PKS module from the pikromycin pathway of Streptomyces venezuelae creates a reaction chamber for the intramodule acyl carrier protein (ACP) domain that carries building blocks and intermediates between acyltransferase, ketosynthase and ketoreductase active sites (see accompanying paper). Here we determine electron cryo-microscopy structures of a full-length pikromycin PKS module in three key biochemical states of its catalytic cycle. Each biochemical state was confirmed by bottom-up liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry. The ACP domain is differentially and precisely positioned after polyketide chain substrate loading on the active site of the ketosynthase, after extension to the beta-keto intermediate, and after beta-hydroxy product generation. The structures reveal the ACP dynamics for sequential interactions with catalytic domains within the reaction chamber, and for transferring the elongated and processed polyketide substrate to the next module in the PKS pathway. During the enzymatic cycle the ketoreductase domain undergoes dramatic conformational rearrangements that enable optimal positioning for reductive processing of the ACP-bound polyketide chain elongation intermediate. These findings have crucial implications for the design of functional PKS modules, and for the engineering of pathways to generate pharmacologically relevant molecules.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074775/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074775/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whicher, Jonathan R -- Dutta, Somnath -- Hansen, Douglas A -- Hale, Wendi A -- Chemler, Joseph A -- Dosey, Annie M -- Narayan, Alison R H -- Hakansson, Kristina -- Sherman, David H -- Smith, Janet L -- Skiniotis, Georgios -- 1R21CA138331-01A1/CA/NCI NIH HHS/ -- DK042303/DK/NIDDK NIH HHS/ -- DK090165/DK/NIDDK NIH HHS/ -- GM076477/GM/NIGMS NIH HHS/ -- R01 DK042303/DK/NIDDK NIH HHS/ -- R01 DK090165/DK/NIDDK NIH HHS/ -- R01 GM076477/GM/NIGMS NIH HHS/ -- T32 GM008597/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Jun 26;510(7506):560-4. doi: 10.1038/nature13409. Epub 2014 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Chemical Biology Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA [3]. ; 1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2]. ; 1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA. ; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA [3] Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA [4] Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24965656" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Carrier Protein/chemistry/metabolism/ultrastructure ; Acyltransferases/chemistry/metabolism/ultrastructure ; Alcohol Oxidoreductases/chemistry/metabolism/ultrastructure ; Bacterial Proteins/chemistry/metabolism/ultrastructure ; *Biocatalysis ; Catalytic Domain ; Cryoelectron Microscopy ; Macrolides/metabolism ; Models, Molecular ; Polyketide Synthases/*chemistry/*metabolism/ultrastructure ; Protein Structure, Tertiary ; Streptomyces/*enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-28
    Description: RNA-directed DNA methylation in Arabidopsis thaliana depends on the upstream synthesis of 24-nucleotide small interfering RNAs (siRNAs) by RNA POLYMERASE IV (Pol IV) and downstream synthesis of non-coding transcripts by Pol V. Pol V transcripts are thought to interact with siRNAs which then recruit DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) to methylate DNA. The SU(VAR)3-9 homologues SUVH2 and SUVH9 act in this downstream step but the mechanism of their action is unknown. Here we show that genome-wide Pol V association with chromatin redundantly requires SUVH2 and SUVH9. Although SUVH2 and SUVH9 resemble histone methyltransferases, a crystal structure reveals that SUVH9 lacks a peptide-substrate binding cleft and lacks a properly formed S-adenosyl methionine (SAM)-binding pocket necessary for normal catalysis, consistent with a lack of methyltransferase activity for these proteins. SUVH2 and SUVH9 both contain SRA (SET- and RING-ASSOCIATED) domains capable of binding methylated DNA, suggesting that they function to recruit Pol V through DNA methylation. Consistent with this model, mutation of DNA METHYLTRANSFERASE 1 (MET1) causes loss of DNA methylation, a nearly complete loss of Pol V at its normal locations, and redistribution of Pol V to sites that become hypermethylated. Furthermore, tethering SUVH2 with a zinc finger to an unmethylated site is sufficient to recruit Pol V and establish DNA methylation and gene silencing. These results indicate that Pol V is recruited to DNA methylation through the methyl-DNA binding SUVH2 and SUVH9 proteins, and our mechanistic findings suggest a means for selectively targeting regions of plant genomes for epigenetic silencing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Lianna M -- Du, Jiamu -- Hale, Christopher J -- Bischof, Sylvain -- Feng, Suhua -- Chodavarapu, Ramakrishna K -- Zhong, Xuehua -- Marson, Giuseppe -- Pellegrini, Matteo -- Segal, David J -- Patel, Dinshaw J -- Jacobsen, Steven E -- F32GM096483-01/GM/NIGMS NIH HHS/ -- GM60398/GM/NIGMS NIH HHS/ -- P30 CA016042/CA/NCI NIH HHS/ -- R37 GM060398/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Mar 6;507(7490):124-8. doi: 10.1038/nature12931. Epub 2014 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA [2]. ; 1] Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2]. ; Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA. ; 1] Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA [2] Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California 90095, USA. ; 1] Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA [2] Wisconsin Institute for Discovery, Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA. ; Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. ; Genome Center and Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, California 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463519" target="_blank"〉PubMed〈/a〉
    Keywords: *Arabidopsis/enzymology/genetics ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Binding Sites/genetics ; Biocatalysis ; Chromatin/chemistry/genetics/metabolism ; Crystallography, X-Ray ; DNA (Cytosine-5-)-Methyltransferase/genetics/metabolism ; *DNA Methylation/genetics ; DNA-Binding Proteins/chemistry/metabolism ; DNA-Directed RNA Polymerases/*metabolism ; Flowers/growth & development ; Gene Expression Regulation, Plant ; Gene Silencing ; Genome, Plant/genetics ; Histone-Lysine N-Methyltransferase/*chemistry/*metabolism ; Models, Molecular ; Mutation/genetics ; Phenotype ; Protein Structure, Tertiary ; Protein Transport ; RNA, Plant/biosynthesis/genetics/metabolism ; RNA, Small Interfering/biosynthesis/genetics/metabolism ; Transcription, Genetic ; Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-04
    Description: T cells discriminate between foreign and host molecules by recognizing distinct microbial molecules, predominantly peptides and lipids. Riboflavin precursors found in many bacteria and yeast also selectively activate mucosal-associated invariant T (MAIT) cells, an abundant population of innate-like T cells in humans. However, the genesis of these small organic molecules and their mode of presentation to MAIT cells by the major histocompatibility complex (MHC)-related protein MR1 (ref. 8) are not well understood. Here we show that MAIT-cell activation requires key genes encoding enzymes that form 5-amino-6-d-ribitylaminouracil (5-A-RU), an early intermediate in bacterial riboflavin synthesis. Although 5-A-RU does not bind MR1 or activate MAIT cells directly, it does form potent MAIT-activating antigens via non-enzymatic reactions with small molecules, such as glyoxal and methylglyoxal, which are derived from other metabolic pathways. The MAIT antigens formed by the reactions between 5-A-RU and glyoxal/methylglyoxal were simple adducts, 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU) and 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), respectively, which bound to MR1 as shown by crystal structures of MAIT TCR ternary complexes. Although 5-OP-RU and 5-OE-RU are unstable intermediates, they became trapped by MR1 as reversible covalent Schiff base complexes. Mass spectra supported the capture by MR1 of 5-OP-RU and 5-OE-RU from bacterial cultures that activate MAIT cells, but not from non-activating bacteria, indicating that these MAIT antigens are present in a range of microbes. Thus, MR1 is able to capture, stabilize and present chemically unstable pyrimidine intermediates, which otherwise convert to lumazines, as potent antigens to MAIT cells. These pyrimidine adducts are microbial signatures for MAIT-cell immunosurveillance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Corbett, Alexandra J -- Eckle, Sidonia B G -- Birkinshaw, Richard W -- Liu, Ligong -- Patel, Onisha -- Mahony, Jennifer -- Chen, Zhenjun -- Reantragoon, Rangsima -- Meehan, Bronwyn -- Cao, Hanwei -- Williamson, Nicholas A -- Strugnell, Richard A -- Van Sinderen, Douwe -- Mak, Jeffrey Y W -- Fairlie, David P -- Kjer-Nielsen, Lars -- Rossjohn, Jamie -- McCluskey, James -- England -- Nature. 2014 May 15;509(7500):361-5. doi: 10.1038/nature13160. Epub 2014 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia [2]. ; 1] Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia [2]. ; 1] Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia [2]. ; Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia. ; School of Microbiology, University College Cork, Cork, Ireland. ; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia. ; The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia. ; 1] School of Microbiology, University College Cork, Cork, Ireland [2] Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland. ; Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia. ; 1] Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia [2] Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia [3]. ; 1] Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia [2] Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia [3] Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK [4].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24695216" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Sugars/chemistry/immunology/metabolism ; Antigen Presentation/immunology ; Antigens, Bacterial/chemistry/*immunology/*metabolism ; Glyoxal/chemistry/metabolism ; Histocompatibility Antigens Class I/chemistry/immunology/metabolism ; Humans ; Immunity, Innate/immunology ; Immunity, Mucosal/immunology ; Ligands ; Lymphocyte Activation/*immunology ; *Metabolic Networks and Pathways ; Models, Molecular ; Molecular Conformation ; Mucous Membrane/immunology ; Pyrimidines/chemistry/immunology/*metabolism ; Pyruvaldehyde/chemistry/metabolism ; Riboflavin/biosynthesis/immunology/*metabolism ; Schiff Bases/chemistry ; T-Lymphocyte Subsets/cytology/*immunology ; Uracil/analogs & derivatives/chemistry/immunology/metabolism ; Vitamin B Complex/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-10-21
    Description: Hepatitis A virus (HAV) remains enigmatic, despite 1.4 million cases worldwide annually. It differs radically from other picornaviruses, existing in an enveloped form and being unusually stable, both genetically and physically, but has proved difficult to study. Here we report high-resolution X-ray structures for the mature virus and the empty particle. The structures of the two particles are indistinguishable, apart from some disorder on the inside of the empty particle. The full virus contains the small viral protein VP4, whereas the empty particle harbours only the uncleaved precursor, VP0. The smooth particle surface is devoid of depressions that might correspond to receptor-binding sites. Peptide scanning data extend the previously reported VP3 antigenic site, while structure-based predictions suggest further epitopes. HAV contains no pocket factor and can withstand remarkably high temperature and low pH, and empty particles are even more robust than full particles. The virus probably uncoats via a novel mechanism, being assembled differently to other picornaviruses. It utilizes a VP2 'domain swap' characteristic of insect picorna-like viruses, and structure-based phylogenetic analysis places HAV between typical picornaviruses and the insect viruses. The enigmatic properties of HAV may reflect its position as a link between 'modern' picornaviruses and the more 'primitive' precursor insect viruses; for instance, HAV retains the ability to move from cell-to-cell by transcytosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773894/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773894/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xiangxi -- Ren, Jingshan -- Gao, Qiang -- Hu, Zhongyu -- Sun, Yao -- Li, Xuemei -- Rowlands, David J -- Yin, Weidong -- Wang, Junzhi -- Stuart, David I -- Rao, Zihe -- Fry, Elizabeth E -- 075491/Z/04/Wellcome Trust/United Kingdom -- G1000099/Medical Research Council/United Kingdom -- England -- Nature. 2015 Jan 1;517(7532):85-8. doi: 10.1038/nature13806. Epub 2014 Oct 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China. ; Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK. ; 1] National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China [2] Sinovac Biotech Co., Ltd, Beijing 100085, China. ; National Institutes for Food and Drug Control, No. 2, TiantanXili, Beijing 100050, China. ; Institute of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. ; Sinovac Biotech Co., Ltd, Beijing 100085, China. ; 1] Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK [2] Diamond Light Sources, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK. ; 1] National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China [2] Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, China [3] State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25327248" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Capsid/chemistry ; Capsid Proteins/chemistry ; Crystallography, X-Ray ; *Evolution, Molecular ; Hepatitis A virus/*chemistry ; Hot Temperature ; Humans ; Hydrogen-Ion Concentration ; Insects/virology ; Models, Molecular ; Phylogeny ; Picornaviridae/*chemistry ; Transcytosis ; Virion/chemistry ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...