ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Reproducibility of Results  (27)
  • Nature Publishing Group (NPG)  (27)
  • American Chemical Society (ACS)
  • American Geophysical Union
  • Institute of Physics
  • 2010-2014  (27)
  • 1960-1964
  • 2013  (27)
Collection
Publisher
  • Nature Publishing Group (NPG)  (27)
  • American Chemical Society (ACS)
  • American Geophysical Union
  • Institute of Physics
Years
  • 2010-2014  (27)
  • 1960-1964
Year
  • 1
    Publication Date: 2013-06-19
    Description: Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour-normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour-normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919509/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919509/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lawrence, Michael S -- Stojanov, Petar -- Polak, Paz -- Kryukov, Gregory V -- Cibulskis, Kristian -- Sivachenko, Andrey -- Carter, Scott L -- Stewart, Chip -- Mermel, Craig H -- Roberts, Steven A -- Kiezun, Adam -- Hammerman, Peter S -- McKenna, Aaron -- Drier, Yotam -- Zou, Lihua -- Ramos, Alex H -- Pugh, Trevor J -- Stransky, Nicolas -- Helman, Elena -- Kim, Jaegil -- Sougnez, Carrie -- Ambrogio, Lauren -- Nickerson, Elizabeth -- Shefler, Erica -- Cortes, Maria L -- Auclair, Daniel -- Saksena, Gordon -- Voet, Douglas -- Noble, Michael -- DiCara, Daniel -- Lin, Pei -- Lichtenstein, Lee -- Heiman, David I -- Fennell, Timothy -- Imielinski, Marcin -- Hernandez, Bryan -- Hodis, Eran -- Baca, Sylvan -- Dulak, Austin M -- Lohr, Jens -- Landau, Dan-Avi -- Wu, Catherine J -- Melendez-Zajgla, Jorge -- Hidalgo-Miranda, Alfredo -- Koren, Amnon -- McCarroll, Steven A -- Mora, Jaume -- Lee, Ryan S -- Crompton, Brian -- Onofrio, Robert -- Parkin, Melissa -- Winckler, Wendy -- Ardlie, Kristin -- Gabriel, Stacey B -- Roberts, Charles W M -- Biegel, Jaclyn A -- Stegmaier, Kimberly -- Bass, Adam J -- Garraway, Levi A -- Meyerson, Matthew -- Golub, Todd R -- Gordenin, Dmitry A -- Sunyaev, Shamil -- Lander, Eric S -- Getz, Gad -- ES065073/ES/NIEHS NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 CA009216/CA/NCI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- U24 CA143845/CA/NCI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2013 Jul 11;499(7457):214-8. doi: 10.1038/nature12213. Epub 2013 Jun 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23770567" target="_blank"〉PubMed〈/a〉
    Keywords: Artifacts ; DNA Replication Timing ; Exome/genetics ; False Positive Reactions ; Gene Expression ; *Genetic Heterogeneity ; Genome, Human/genetics ; Humans ; Lung Neoplasms/genetics ; Mutation/*genetics ; Mutation Rate ; Neoplasms/classification/*genetics/pathology ; Neoplasms, Squamous Cell/genetics ; Oncogenes/*genetics ; Reproducibility of Results ; Sample Size
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-03
    Description: The increasing demands placed on natural resources for fuel and food production require that we explore the use of efficient, sustainable feedstocks such as brown macroalgae. The full potential of brown macroalgae as feedstocks for commercial-scale fuel ethanol production, however, requires extensive re-engineering of the alginate and mannitol catabolic pathways in the standard industrial microbe Saccharomyces cerevisiae. Here we present the discovery of an alginate monomer (4-deoxy-L-erythro-5-hexoseulose uronate, or DEHU) transporter from the alginolytic eukaryote Asteromyces cruciatus. The genomic integration and overexpression of the gene encoding this transporter, together with the necessary bacterial alginate and deregulated native mannitol catabolism genes, conferred the ability of an S. cerevisiae strain to efficiently metabolize DEHU and mannitol. When this platform was further adapted to grow on mannitol and DEHU under anaerobic conditions, it was capable of ethanol fermentation from mannitol and DEHU, achieving titres of 4.6% (v/v) (36.2 g l(-1)) and yields up to 83% of the maximum theoretical yield from consumed sugars. These results show that all major sugars in brown macroalgae can be used as feedstocks for biofuels and value-added renewable chemicals in a manner that is comparable to traditional arable-land-based feedstocks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Enquist-Newman, Maria -- Faust, Ann Marie E -- Bravo, Daniel D -- Santos, Christine Nicole S -- Raisner, Ryan M -- Hanel, Arthur -- Sarvabhowman, Preethi -- Le, Chi -- Regitsky, Drew D -- Cooper, Susan R -- Peereboom, Lars -- Clark, Alana -- Martinez, Yessica -- Goldsmith, Joshua -- Cho, Min Y -- Donohoue, Paul D -- Luo, Lily -- Lamberson, Brigit -- Tamrakar, Pramila -- Kim, Edward J -- Villari, Jeffrey L -- Gill, Avinash -- Tripathi, Shital A -- Karamchedu, Padma -- Paredes, Carlos J -- Rajgarhia, Vineet -- Kotlar, Hans Kristian -- Bailey, Richard B -- Miller, Dennis J -- Ohler, Nicholas L -- Swimmer, Candace -- Yoshikuni, Yasuo -- England -- Nature. 2014 Jan 9;505(7482):239-43. doi: 10.1038/nature12771. Epub 2013 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Bio Architecture Lab Inc., 604 Bancroft Way, Suite A, Berkeley, California 94710, USA [2]. ; 1] Bio Architecture Lab Inc., 604 Bancroft Way, Suite A, Berkeley, California 94710, USA [2] Manus Biosynthesis Inc., 790 Memorial Drive, Suite 102, Cambridge, Massachusetts 02139 (C.N.S.S.); Calysta Energy, 1140 O'Brien Drive, Menlo Park, California 94025 (D.D.R.); Sutro Biopharma lnc., 310 Utah Avenue, Suite 150, South San Francisco, California 94080, USA (A.G.); Total New Energies USA, 5858 Horton Street, Emeryville, California 94560 (S.A.T.; V.R.). ; Bio Architecture Lab Inc., 604 Bancroft Way, Suite A, Berkeley, California 94710, USA. ; Department of Chemical Engineering and Materials Science, Michigan State University, 2527 Engineering Building, East Lansing, Michigan 48824-1226, USA. ; Statoil ASA, Statoil Research Centre, Arkitekt Ebbells vei 10, Rotvoll, 7005 Trondheim, Norway. ; 1] Bio Architecture Lab Inc., 604 Bancroft Way, Suite A, Berkeley, California 94710, USA [2] BALChile S.A., Badajoz 100, Oficina 1404, Las Condes, Santiago 7550000, Chile [3] BAL Biofuels S.A., Badajoz 100, Oficina 1404, Las Condes, Santiago 7550000, Chile.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24291791" target="_blank"〉PubMed〈/a〉
    Keywords: Alginates/metabolism ; Anaerobiosis ; Ascomycota/genetics/metabolism ; Biofuels/*supply & distribution ; Biotechnology ; *Carbohydrate Metabolism ; Carrier Proteins/genetics/metabolism ; Ethanol/*metabolism ; Evolution, Molecular ; Fermentation ; Genetic Complementation Test ; *Genetic Engineering ; Glucuronic Acid/metabolism ; Hexuronic Acids/metabolism ; Mannitol/metabolism ; Phaeophyta/genetics/*metabolism ; Quinic Acid/metabolism ; Reproducibility of Results ; Saccharomyces cerevisiae/genetics/*metabolism ; Seaweed/genetics/metabolism ; Uronic Acids/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-05
    Description: We have taken the first steps towards a complete reconstruction of the Mycobacterium tuberculosis regulatory network based on ChIP-Seq and combined this reconstruction with system-wide profiling of messenger RNAs, proteins, metabolites and lipids during hypoxia and re-aeration. Adaptations to hypoxia are thought to have a prominent role in M. tuberculosis pathogenesis. Using ChIP-Seq combined with expression data from the induction of the same factors, we have reconstructed a draft regulatory network based on 50 transcription factors. This network model revealed a direct interconnection between the hypoxic response, lipid catabolism, lipid anabolism and the production of cell wall lipids. As a validation of this model, in response to oxygen availability we observe substantial alterations in lipid content and changes in gene expression and metabolites in corresponding metabolic pathways. The regulatory network reveals transcription factors underlying these changes, allows us to computationally predict expression changes, and indicates that Rv0081 is a regulatory hub.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087036/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087036/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galagan, James E -- Minch, Kyle -- Peterson, Matthew -- Lyubetskaya, Anna -- Azizi, Elham -- Sweet, Linsday -- Gomes, Antonio -- Rustad, Tige -- Dolganov, Gregory -- Glotova, Irina -- Abeel, Thomas -- Mahwinney, Chris -- Kennedy, Adam D -- Allard, Rene -- Brabant, William -- Krueger, Andrew -- Jaini, Suma -- Honda, Brent -- Yu, Wen-Han -- Hickey, Mark J -- Zucker, Jeremy -- Garay, Christopher -- Weiner, Brian -- Sisk, Peter -- Stolte, Christian -- Winkler, Jessica K -- Van de Peer, Yves -- Iazzetti, Paul -- Camacho, Diogo -- Dreyfuss, Jonathan -- Liu, Yang -- Dorhoi, Anca -- Mollenkopf, Hans-Joachim -- Drogaris, Paul -- Lamontagne, Julie -- Zhou, Yiyong -- Piquenot, Julie -- Park, Sang Tae -- Raman, Sahadevan -- Kaufmann, Stefan H E -- Mohney, Robert P -- Chelsky, Daniel -- Moody, D Branch -- Sherman, David R -- Schoolnik, Gary K -- HHSN272200800059C/AI/NIAID NIH HHS/ -- HHSN272200800059C/PHS HHS/ -- R01 AI 071155/AI/NIAID NIH HHS/ -- R01 AI071155/AI/NIAID NIH HHS/ -- U19 AI 076217/AI/NIAID NIH HHS/ -- U19 AI076217/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Jul 11;499(7457):178-83. doi: 10.1038/nature12337. Epub 2013 Jul 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA. jgalag@bu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23823726" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Anoxia/*genetics/metabolism ; Bacterial Proteins/genetics/metabolism ; Binding Sites ; Chromatin Immunoprecipitation ; Gene Expression Profiling ; *Gene Regulatory Networks/genetics ; Genomics ; Lipid Metabolism/genetics ; Metabolic Networks and Pathways/*genetics ; Models, Biological ; Mycobacterium tuberculosis/drug effects/*genetics/*metabolism/physiology ; Oxygen/pharmacology ; Proteolysis ; RNA, Messenger/genetics/metabolism ; Reproducibility of Results ; Sequence Analysis, DNA ; Transcription Factors/genetics/metabolism ; Tuberculosis/metabolism/microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-11-29
    Description: Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940870/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940870/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McNamara, Case W -- Lee, Marcus C S -- Lim, Chek Shik -- Lim, Siau Hoi -- Roland, Jason -- Nagle, Advait -- Simon, Oliver -- Yeung, Bryan K S -- Chatterjee, Arnab K -- McCormack, Susan L -- Manary, Micah J -- Zeeman, Anne-Marie -- Dechering, Koen J -- Kumar, T R Santha -- Henrich, Philipp P -- Gagaring, Kerstin -- Ibanez, Maureen -- Kato, Nobutaka -- Kuhen, Kelli L -- Fischli, Christoph -- Rottmann, Matthias -- Plouffe, David M -- Bursulaya, Badry -- Meister, Stephan -- Rameh, Lucia -- Trappe, Joerg -- Haasen, Dorothea -- Timmerman, Martijn -- Sauerwein, Robert W -- Suwanarusk, Rossarin -- Russell, Bruce -- Renia, Laurent -- Nosten, Francois -- Tully, David C -- Kocken, Clemens H M -- Glynne, Richard J -- Bodenreider, Christophe -- Fidock, David A -- Diagana, Thierry T -- Winzeler, Elizabeth A -- 078285/Wellcome Trust/United Kingdom -- 089275/Wellcome Trust/United Kingdom -- 090534/Wellcome Trust/United Kingdom -- 096157/Wellcome Trust/United Kingdom -- R01 AI079709/AI/NIAID NIH HHS/ -- R01 AI085584/AI/NIAID NIH HHS/ -- R01 AI090141/AI/NIAID NIH HHS/ -- R01 AI103058/AI/NIAID NIH HHS/ -- R01079709/PHS HHS/ -- R01085584/PHS HHS/ -- R01AI090141/AI/NIAID NIH HHS/ -- WT078285/Wellcome Trust/United Kingdom -- WT096157/Wellcome Trust/United Kingdom -- England -- Nature. 2013 Dec 12;504(7479):248-53. doi: 10.1038/nature12782. Epub 2013 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA [2]. ; 1] Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA [2]. ; Novartis Institutes for Tropical Disease, 138670 Singapore. ; Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA. ; Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; Department of Parasitology, Biomedical Primate Research Centre, PO Box 3306, 2280 GH Rijswijk, The Netherlands. ; TropIQ Health Sciences, 6525 GA Nijmegen, The Netherlands. ; Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA. ; Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland. ; 1] Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland [2] University of Basel, CH-4003 Basel, Switzerland. ; Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA. ; Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland. ; 1] TropIQ Health Sciences, 6525 GA Nijmegen, The Netherlands [2] Department of Medical Microbiology, Radboud University, Nijmegen Medical CentrePO Box 9101, 6500 HB Nijmegen, The Netherlands. ; Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, 138648 Singapore. ; 1] Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, 138648 Singapore [2] Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 117545 Singapore. ; 1] Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK [2] Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand. ; 1] Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA [2] Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA. ; 1] Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA [2] Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24284631" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Phosphatidylinositol 4-Kinase/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Cytokinesis/drug effects ; Drug Resistance/drug effects/genetics ; Fatty Acids/metabolism ; Female ; Hepatocytes/parasitology ; Humans ; Imidazoles/metabolism/pharmacology ; Life Cycle Stages/drug effects ; Macaca mulatta ; Malaria/*drug therapy/*parasitology ; Male ; Models, Biological ; Models, Molecular ; Phosphatidylinositol Phosphates/metabolism ; Plasmodium/classification/*drug effects/*enzymology/growth & development ; Pyrazoles/metabolism/pharmacology ; Quinoxalines/metabolism/pharmacology ; Reproducibility of Results ; Schizonts/cytology/drug effects ; rab GTP-Binding Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-15
    Description: The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-pi interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15 A from the classical, 'orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dror, Ron O -- Green, Hillary F -- Valant, Celine -- Borhani, David W -- Valcourt, James R -- Pan, Albert C -- Arlow, Daniel H -- Canals, Meritxell -- Lane, J Robert -- Rahmani, Raphael -- Baell, Jonathan B -- Sexton, Patrick M -- Christopoulos, Arthur -- Shaw, David E -- England -- Nature. 2013 Nov 14;503(7475):295-9. doi: 10.1038/nature12595. Epub 2013 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] D. E. Shaw Research, 120 West 45th Street, 39th Floor, New York, New York 10036, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24121438" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation/physiology ; Animals ; Binding Sites ; CHO Cells ; Cricetulus ; *Drug Design ; Humans ; Models, Chemical ; Molecular Conformation ; Molecular Dynamics Simulation ; Mutation ; Protein Binding ; Receptors, G-Protein-Coupled/*antagonists & inhibitors/*chemistry/genetics ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-11-01
    Description: Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3beta signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gafni, Ohad -- Weinberger, Leehee -- Mansour, Abed AlFatah -- Manor, Yair S -- Chomsky, Elad -- Ben-Yosef, Dalit -- Kalma, Yael -- Viukov, Sergey -- Maza, Itay -- Zviran, Asaf -- Rais, Yoach -- Shipony, Zohar -- Mukamel, Zohar -- Krupalnik, Vladislav -- Zerbib, Mirie -- Geula, Shay -- Caspi, Inbal -- Schneir, Dan -- Shwartz, Tamar -- Gilad, Shlomit -- Amann-Zalcenstein, Daniela -- Benjamin, Sima -- Amit, Ido -- Tanay, Amos -- Massarwa, Rada -- Novershtern, Noa -- Hanna, Jacob H -- England -- Nature. 2013 Dec 12;504(7479):282-6. doi: 10.1038/nature12745. Epub 2013 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel [2]. ; 1] The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel [2] The Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel [3] The Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel [4]. ; 1] Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel [2] The Department of Cell and Developmental Biology, Sackler Medical School, Tel-Aviv University, Israel. ; Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel. ; The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel. ; 1] The Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel [2] The Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. ; The Israel National Center for Personalized Medicine (INCPM), Weizmann Institute of Science, Rehovot 76100, Israel. ; The Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172903" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastocyst/cytology ; Cellular Reprogramming ; Chimera/embryology ; Chromatin/metabolism ; DNA Methylation ; Embryo, Mammalian/cytology/embryology ; Embryonic Stem Cells/cytology/metabolism ; Epigenesis, Genetic ; Female ; Germ Layers/cytology ; Histones/metabolism ; Humans ; Induced Pluripotent Stem Cells/*cytology/metabolism/transplantation ; Male ; Mice ; Morula/cytology ; Organogenesis ; Promoter Regions, Genetic/genetics ; Regenerative Medicine ; Reproducibility of Results ; Signal Transduction ; X Chromosome Inactivation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-16
    Description: All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776390/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776390/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alexandrov, Ludmil B -- Nik-Zainal, Serena -- Wedge, David C -- Aparicio, Samuel A J R -- Behjati, Sam -- Biankin, Andrew V -- Bignell, Graham R -- Bolli, Niccolo -- Borg, Ake -- Borresen-Dale, Anne-Lise -- Boyault, Sandrine -- Burkhardt, Birgit -- Butler, Adam P -- Caldas, Carlos -- Davies, Helen R -- Desmedt, Christine -- Eils, Roland -- Eyfjord, Jorunn Erla -- Foekens, John A -- Greaves, Mel -- Hosoda, Fumie -- Hutter, Barbara -- Ilicic, Tomislav -- Imbeaud, Sandrine -- Imielinski, Marcin -- Jager, Natalie -- Jones, David T W -- Jones, David -- Knappskog, Stian -- Kool, Marcel -- Lakhani, Sunil R -- Lopez-Otin, Carlos -- Martin, Sancha -- Munshi, Nikhil C -- Nakamura, Hiromi -- Northcott, Paul A -- Pajic, Marina -- Papaemmanuil, Elli -- Paradiso, Angelo -- Pearson, John V -- Puente, Xose S -- Raine, Keiran -- Ramakrishna, Manasa -- Richardson, Andrea L -- Richter, Julia -- Rosenstiel, Philip -- Schlesner, Matthias -- Schumacher, Ton N -- Span, Paul N -- Teague, Jon W -- Totoki, Yasushi -- Tutt, Andrew N J -- Valdes-Mas, Rafael -- van Buuren, Marit M -- van 't Veer, Laura -- Vincent-Salomon, Anne -- Waddell, Nicola -- Yates, Lucy R -- Australian Pancreatic Cancer Genome Initiative -- ICGC Breast Cancer Consortium -- ICGC MMML-Seq Consortium -- ICGC PedBrain -- Zucman-Rossi, Jessica -- Futreal, P Andrew -- McDermott, Ultan -- Lichter, Peter -- Meyerson, Matthew -- Grimmond, Sean M -- Siebert, Reiner -- Campo, Elias -- Shibata, Tatsuhiro -- Pfister, Stefan M -- Campbell, Peter J -- Stratton, Michael R -- 088340/Wellcome Trust/United Kingdom -- 093867/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- T32 CA009216/CA/NCI NIH HHS/ -- England -- Nature. 2013 Aug 22;500(7463):415-21. doi: 10.1038/nature12477. Epub 2013 Aug 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23945592" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics ; Algorithms ; Cell Transformation, Neoplastic/*genetics/pathology ; Cytidine Deaminase/genetics ; DNA/genetics/metabolism ; DNA Mutational Analysis ; Humans ; Models, Genetic ; Mutagenesis/*genetics ; Mutagenesis, Insertional/genetics ; Mutagens/pharmacology ; Mutation/*genetics ; Neoplasms/enzymology/*genetics/pathology ; Organ Specificity ; Reproducibility of Results ; Sequence Deletion/genetics ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-03-08
    Description: Despite their importance, the molecular circuits that control the differentiation of naive T cells remain largely unknown. Recent studies that reconstructed regulatory networks in mammalian cells have focused on short-term responses and relied on perturbation-based approaches that cannot be readily applied to primary T cells. Here we combine transcriptional profiling at high temporal resolution, novel computational algorithms, and innovative nanowire-based perturbation tools to systematically derive and experimentally validate a model of the dynamic regulatory network that controls the differentiation of mouse TH17 cells, a proinflammatory T-cell subset that has been implicated in the pathogenesis of multiple autoimmune diseases. The TH17 transcriptional network consists of two self-reinforcing, but mutually antagonistic, modules, with 12 novel regulators, the coupled action of which may be essential for maintaining the balance between TH17 and other CD4(+) T-cell subsets. Our study identifies and validates 39 regulatory factors, embeds them within a comprehensive temporal network and reveals its organizational principles; it also highlights novel drug targets for controlling TH17 cell differentiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637864/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637864/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yosef, Nir -- Shalek, Alex K -- Gaublomme, Jellert T -- Jin, Hulin -- Lee, Youjin -- Awasthi, Amit -- Wu, Chuan -- Karwacz, Katarzyna -- Xiao, Sheng -- Jorgolli, Marsela -- Gennert, David -- Satija, Rahul -- Shakya, Arvind -- Lu, Diana Y -- Trombetta, John J -- Pillai, Meenu R -- Ratcliffe, Peter J -- Coleman, Mathew L -- Bix, Mark -- Tantin, Dean -- Park, Hongkun -- Kuchroo, Vijay K -- Regev, Aviv -- 1P50HG006193-01/HG/NHGRI NIH HHS/ -- 5DP1OD003893-03/OD/NIH HHS/ -- AI073748/AI/NIAID NIH HHS/ -- AI45757/AI/NIAID NIH HHS/ -- DP1 OD003893/OD/NIH HHS/ -- DP1 OD003958/OD/NIH HHS/ -- DP1OD003958-01/OD/NIH HHS/ -- F32 HD075541/HD/NICHD NIH HHS/ -- K01 DK090105/DK/NIDDK NIH HHS/ -- NS 30843/NS/NINDS NIH HHS/ -- NS045937/NS/NINDS NIH HHS/ -- P01 AI045757/AI/NIAID NIH HHS/ -- P01 AI073748/AI/NIAID NIH HHS/ -- P50 HG006193/HG/NHGRI NIH HHS/ -- R01 AI100873/AI/NIAID NIH HHS/ -- R01 NS030843/NS/NINDS NIH HHS/ -- R01 NS045937/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Apr 25;496(7446):461-8. doi: 10.1038/nature11981. Epub 2013 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23467089" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/metabolism ; Cell Differentiation/*genetics ; Cells, Cultured ; DNA/genetics/metabolism ; Forkhead Transcription Factors/metabolism ; Gene Knockdown Techniques ; Gene Regulatory Networks/*genetics ; Genome/genetics ; Interferon-gamma/biosynthesis ; Interleukin-2/genetics ; Mice ; Mice, Inbred C57BL ; Nanowires ; Neoplasm Proteins/metabolism ; Nuclear Proteins/metabolism ; RNA, Messenger/genetics/metabolism ; Reproducibility of Results ; Silicon ; Th17 Cells/*cytology/immunology/*metabolism ; Time Factors ; Trans-Activators/metabolism ; Transcription Factors/metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-11-12
    Description: Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the alpha1 subunit of soluble guanylyl cyclase (alpha1-sGC), and CCT7 encodes CCTeta, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce alpha1-sGC as well as beta1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in alpha1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erdmann, Jeanette -- Stark, Klaus -- Esslinger, Ulrike B -- Rumpf, Philipp Moritz -- Koesling, Doris -- de Wit, Cor -- Kaiser, Frank J -- Braunholz, Diana -- Medack, Anja -- Fischer, Marcus -- Zimmermann, Martina E -- Tennstedt, Stephanie -- Graf, Elisabeth -- Eck, Sebastian -- Aherrahrou, Zouhair -- Nahrstaedt, Janja -- Willenborg, Christina -- Bruse, Petra -- Braenne, Ingrid -- Nothen, Markus M -- Hofmann, Per -- Braund, Peter S -- Mergia, Evanthia -- Reinhard, Wibke -- Burgdorf, Christof -- Schreiber, Stefan -- Balmforth, Anthony J -- Hall, Alistair S -- Bertram, Lars -- Steinhagen-Thiessen, Elisabeth -- Li, Shu-Chen -- Marz, Winfried -- Reilly, Muredach -- Kathiresan, Sekar -- McPherson, Ruth -- Walter, Ulrich -- CARDIoGRAM -- Ott, Jurg -- Samani, Nilesh J -- Strom, Tim M -- Meitinger, Thomas -- Hengstenberg, Christian -- Schunkert, Heribert -- British Heart Foundation/United Kingdom -- England -- Nature. 2013 Dec 19;504(7480):432-6. doi: 10.1038/nature12722. Epub 2013 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institut fur Integrative und Experimentelle Genomik, Universitat zu Lubeck, 23562 Lubeck, Germany [2] German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lubeck/Kiel, 23562 Lubeck, Germany [3]. ; 1] Klinik und Poliklinik fur Innere Medizin II, Universitatsklinikum Regensburg, 93053 Regensburg, Germany [2] Department of Genetic Epidemiology, University of Regensburg, 93053 Regensburg, Germany [3]. ; 1] Klinik und Poliklinik fur Innere Medizin II, Universitatsklinikum Regensburg, 93053 Regensburg, Germany [2] Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S937 Paris, France [3]. ; 1] Deutsches Herzzentrum Munchen and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitat Munchen, 80636 Munchen, Germany [2] German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany [3]. ; Department of Pharmacology and Toxicology, Ruhr-University Bochum, 44801 Bochum, Germany. ; 1] German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lubeck/Kiel, 23562 Lubeck, Germany [2] Institut fur Physiologie, Universitat zu Lubeck, 23562 Lubeck, Germany. ; 1] German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lubeck/Kiel, 23562 Lubeck, Germany [2] Institut fur Humangenetik, Universitat zu Lubeck, 23562 Lubeck, Germany. ; Institut fur Humangenetik, Universitat zu Lubeck, 23562 Lubeck, Germany. ; Institut fur Integrative und Experimentelle Genomik, Universitat zu Lubeck, 23562 Lubeck, Germany. ; Klinik und Poliklinik fur Innere Medizin II, Universitatsklinikum Regensburg, 93053 Regensburg, Germany. ; 1] Institute of Human Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, 85764 Neuherberg, Germany [2] Institute of Human Genetics, Technische Universitat Munchen, 81675 Munchen, Germany. ; 1] Institut fur Integrative und Experimentelle Genomik, Universitat zu Lubeck, 23562 Lubeck, Germany [2] German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lubeck/Kiel, 23562 Lubeck, Germany. ; 1] Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany [2] Department of Genomics, Research Center Life & Brain, University of Bonn, 53127 Bonn, Germany. ; 1] Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany [2] Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, 4003 Basel, Switzerland. ; 1] Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK [2] Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester LE1 7RH, UK. ; 1] Deutsches Herzzentrum Munchen and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitat Munchen, 80636 Munchen, Germany [2] German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany. ; Deutsches Herzzentrum Munchen and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitat Munchen, 80636 Munchen, Germany. ; Institute of Clinical Molecular Biology, Christian-Albrecht-Universitat, 24105 Kiel, Germany. ; Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK. ; Division of Cardiovascular and Neuronal Remodelling, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK. ; Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. ; Charite Research Group on Geriatrics, Charite-Universitatsmedizin, 10117 Berlin, Germany. ; 1] Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany [2] Department of Psychology, TU Dresden, 01062 Dresden, Germany. ; 1] Synlab Academy and Business Development, synlab Services GmbH, 68165 Mannheim, Germany [2] Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria [3] Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany. ; The Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; 1] Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts 02215, USA [2] Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02215, USA [3] Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02215, USA. ; University of Ottawa, Heart Institute, Ottawa, Ontario K1Y 4W7, Canada. ; 1] Centrum fur Thrombose und Hamostase (CTH), Universitatsmedizin Mainz, 55131 Mainz, Germany [2] German Centre for Cardiovascular Research (DZHK), partner site RheinMain, 55131 Mainz, Germany. ; 1] Institute of Psychology, Chinese Academy of Sciences, Beijing 100864, China [2] Laboratory of Statistical Genetics, Rockefeller University, New York 10065, USA. ; 1] Deutsches Herzzentrum Munchen and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitat Munchen, 80636 Munchen, Germany [2] Institute of Human Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, 85764 Neuherberg, Germany [3] Institute of Human Genetics, Technische Universitat Munchen, 81675 Munchen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24213632" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chaperonin Containing TCP-1/genetics/metabolism ; Cyclic GMP/metabolism ; Disease Susceptibility/*metabolism ; Exome/genetics ; Female ; Genetic Predisposition to Disease ; Guanylate Cyclase/deficiency/genetics/metabolism ; HEK293 Cells ; Humans ; Male ; Mice ; Mutation/genetics ; Myocardial Infarction/genetics/*metabolism/physiopathology ; Nitric Oxide/*metabolism ; Pedigree ; Platelet Activation ; Receptors, Cytoplasmic and Nuclear/deficiency/genetics/metabolism ; Reproducibility of Results ; *Signal Transduction ; Solubility ; Thrombosis/metabolism ; Vasodilation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-04-12
    Description: Inhibition of kynurenine 3-monooxygenase (KMO), an enzyme in the eukaryotic tryptophan catabolic pathway (that is, kynurenine pathway), leads to amelioration of Huntington's-disease-relevant phenotypes in yeast, fruitfly and mouse models, as well as in a mouse model of Alzheimer's disease. KMO is a flavin adenine dinucleotide (FAD)-dependent monooxygenase and is located in the outer mitochondrial membrane where it converts l-kynurenine to 3-hydroxykynurenine. Perturbations in the levels of kynurenine pathway metabolites have been linked to the pathogenesis of a spectrum of brain disorders, as well as cancer and several peripheral inflammatory conditions. Despite the importance of KMO as a target for neurodegenerative disease, the molecular basis of KMO inhibition by available lead compounds has remained unknown. Here we report the first crystal structure of Saccharomyces cerevisiae KMO, in the free form and in complex with the tight-binding inhibitor UPF 648. UPF 648 binds close to the FAD cofactor and perturbs the local active-site structure, preventing productive binding of the substrate l-kynurenine. Functional assays and targeted mutagenesis reveal that the active-site architecture and UPF 648 binding are essentially identical in human KMO, validating the yeast KMO-UPF 648 structure as a template for structure-based drug design. This will inform the search for new KMO inhibitors that are able to cross the blood-brain barrier in targeted therapies against neurodegenerative diseases such as Huntington's, Alzheimer's and Parkinson's diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736096/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736096/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amaral, Marta -- Levy, Colin -- Heyes, Derren J -- Lafite, Pierre -- Outeiro, Tiago F -- Giorgini, Flaviano -- Leys, David -- Scrutton, Nigel S -- BB/D01963X/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2013 Apr 18;496(7445):382-5. doi: 10.1038/nature12039. Epub 2013 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23575632" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/metabolism ; Blood-Brain Barrier/metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Cyclopropanes/*chemistry/*pharmacology ; Drug Design ; Enzyme Inhibitors/*chemistry/*pharmacology ; Humans ; Huntington Disease/drug therapy/enzymology ; Kynurenine/metabolism ; Kynurenine 3-Monooxygenase/*antagonists & inhibitors/*chemistry/metabolism ; Models, Molecular ; Molecular Targeted Therapy ; Protein Conformation ; Reproducibility of Results ; Saccharomyces cerevisiae/*enzymology ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...