ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • United States  (22)
  • Models, Biological  (13)
  • Binding Sites
  • American Association for the Advancement of Science (AAAS)  (42)
  • 2010-2014  (42)
  • 1995-1999
  • 1980-1984
  • 1970-1974
  • 2012  (42)
Collection
Publisher
Years
  • 2010-2014  (42)
  • 1995-1999
  • 1980-1984
  • 1970-1974
Year
  • 1
    Publication Date: 2012-04-21
    Description: Salicylate, a plant product, has been in medicinal use since ancient times. More recently, it has been replaced by synthetic derivatives such as aspirin and salsalate, both of which are rapidly broken down to salicylate in vivo. At concentrations reached in plasma after administration of salsalate or of aspirin at high doses, salicylate activates adenosine monophosphate-activated protein kinase (AMPK), a central regulator of cell growth and metabolism. Salicylate binds at the same site as the synthetic activator A-769662 to cause allosteric activation and inhibition of dephosphorylation of the activating phosphorylation site, threonine-172. In AMPK knockout mice, effects of salicylate to increase fat utilization and to lower plasma fatty acids in vivo were lost. Our results suggest that AMPK activation could explain some beneficial effects of salsalate and aspirin in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hawley, Simon A -- Fullerton, Morgan D -- Ross, Fiona A -- Schertzer, Jonathan D -- Chevtzoff, Cyrille -- Walker, Katherine J -- Peggie, Mark W -- Zibrova, Darya -- Green, Kevin A -- Mustard, Kirsty J -- Kemp, Bruce E -- Sakamoto, Kei -- Steinberg, Gregory R -- Hardie, D Grahame -- 080982/Wellcome Trust/United Kingdom -- 097726/Wellcome Trust/United Kingdom -- MC_U127088492/Medical Research Council/United Kingdom -- Canadian Institutes of Health Research/Canada -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 May 18;336(6083):918-22. doi: 10.1126/science.1215327. Epub 2012 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22517326" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/genetics/*metabolism ; Amino Acid Substitution ; Animals ; Aspirin/pharmacology ; Binding Sites ; Carbohydrate Metabolism/drug effects ; Cell Line ; Enzyme Activation ; Enzyme Activators/pharmacology ; HEK293 Cells ; Humans ; Lipid Metabolism/drug effects ; Liver/drug effects/metabolism ; Mice ; Mice, Knockout ; Mutation ; Oxygen Consumption/drug effects ; Phosphorylation ; Pyrones/pharmacology ; Rats ; Salicylates/blood/*metabolism/*pharmacology ; Thiophenes/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-23
    Description: Avian A/H5N1 influenza viruses pose a pandemic threat. As few as five amino acid substitutions, or four with reassortment, might be sufficient for mammal-to-mammal transmission through respiratory droplets. From surveillance data, we found that two of these substitutions are common in A/H5N1 viruses, and thus, some viruses might require only three additional substitutions to become transmissible via respiratory droplets between mammals. We used a mathematical model of within-host virus evolution to study factors that could increase and decrease the probability of the remaining substitutions evolving after the virus has infected a mammalian host. These factors, combined with the presence of some of these substitutions in circulating strains, make a virus evolving in nature a potentially serious threat. These results highlight critical areas in which more data are needed for assessing, and potentially averting, this threat.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3426314/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3426314/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russell, Colin A -- Fonville, Judith M -- Brown, Andre E X -- Burke, David F -- Smith, David L -- James, Sarah L -- Herfst, Sander -- van Boheemen, Sander -- Linster, Martin -- Schrauwen, Eefje J -- Katzelnick, Leah -- Mosterin, Ana -- Kuiken, Thijs -- Maher, Eileen -- Neumann, Gabriele -- Osterhaus, Albert D M E -- Kawaoka, Yoshihiro -- Fouchier, Ron A M -- Smith, Derek J -- DP1 OD000490/OD/NIH HHS/ -- DP1-OD000490-01/OD/NIH HHS/ -- HHSN266200700010C/AI/NIAID NIH HHS/ -- HHSN266200700010C/PHS HHS/ -- R01 AI 069274/AI/NIAID NIH HHS/ -- R56 AI069274/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 22;336(6088):1541-7. doi: 10.1126/science.1222526.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Cambridge, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22723414" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Air Microbiology ; Amino Acid Substitution ; Animals ; Birds ; *Evolution, Molecular ; Genetic Fitness ; Glycosylation ; Hemagglutinin Glycoproteins, Influenza Virus/*genetics/metabolism ; High-Throughput Nucleotide Sequencing ; Humans ; Influenza A Virus, H5N1 Subtype/*genetics/*pathogenicity ; Influenza in Birds/virology ; Influenza, Human/immunology/transmission/*virology ; Mammals ; Models, Biological ; Mutation ; Orthomyxoviridae Infections/transmission/*virology ; Probability ; RNA Replicase/*genetics ; Receptors, Virus/metabolism ; Respiratory System/*virology ; Selection, Genetic ; Sialic Acids/metabolism ; Viral Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-11
    Description: Apical constriction changes cell shapes, driving critical morphogenetic events, including gastrulation in diverse organisms and neural tube closure in vertebrates. Apical constriction is thought to be triggered by contraction of apical actomyosin networks. We found that apical actomyosin contractions began before cell shape changes in both Caenorhabitis elegans and Drosophila. In C. elegans, actomyosin networks were initially dynamic, contracting and generating cortical tension without substantial shrinking of apical surfaces. Apical cell-cell contact zones and actomyosin only later moved increasingly in concert, with no detectable change in actomyosin dynamics or cortical tension. Thus, apical constriction appears to be triggered not by a change in cortical tension, but by dynamic linking of apical cell-cell contact zones to an already contractile apical cortex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298882/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298882/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roh-Johnson, Minna -- Shemer, Gidi -- Higgins, Christopher D -- McClellan, Joseph H -- Werts, Adam D -- Tulu, U Serdar -- Gao, Liang -- Betzig, Eric -- Kiehart, Daniel P -- Goldstein, Bob -- R01 GM033830/GM/NIGMS NIH HHS/ -- R01 GM083071/GM/NIGMS NIH HHS/ -- R01 GM083071-01A1/GM/NIGMS NIH HHS/ -- R01 GM083071-02/GM/NIGMS NIH HHS/ -- R01 GM083071-02S1/GM/NIGMS NIH HHS/ -- R01 GM083071-03/GM/NIGMS NIH HHS/ -- R01 GM083071-04/GM/NIGMS NIH HHS/ -- R01 GM33830/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Mar 9;335(6073):1232-5. doi: 10.1126/science.1217869. Epub 2012 Feb 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22323741" target="_blank"〉PubMed〈/a〉
    Keywords: Actomyosin/chemistry/*physiology ; Animals ; Caenorhabditis elegans/*cytology/*embryology ; Cell Membrane/physiology/ultrastructure ; *Cell Shape ; Computer Simulation ; Cytoskeleton/physiology/ultrastructure ; Drosophila melanogaster/*cytology/*embryology ; Embryo, Nonmammalian/cytology/physiology ; Fluorescence Recovery After Photobleaching ; *Gastrulation ; Intercellular Junctions/physiology/ultrastructure ; Mechanical Phenomena ; Models, Biological ; Morphogenesis ; Myosins/chemistry/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia, S M -- Kolding, J -- Rice, J -- Rochet, M-J -- Zhou, S -- Arimoto, T -- Beyer, J E -- Borges, L -- Bundy, A -- Dunn, D -- Fulton, E A -- Hall, M -- Heino, M -- Law, R -- Makino, M -- Rijnsdorp, A D -- Simard, F -- Smith, A D M -- New York, N.Y. -- Science. 2012 Mar 2;335(6072):1045-7. doi: 10.1126/science.1214594.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Commission on Ecosystem Management, International Union for Conservation of Nature (IUCN-CEM), Fisheries Expert Group, Brussels, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22383833" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; Biomass ; Body Size ; *Conservation of Natural Resources ; *Ecosystem ; *Fisheries ; *Fishes ; Models, Biological ; Policy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-03
    Description: Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional conditions that the organism might encounter in nature. We comprehensively mapped transcription units (TUs) and grouped 2935 promoters into regulons controlled by various RNA polymerase sigma factors, accounting for ~66% of the observed variance in transcriptional activity. This global classification of promoters and detailed description of TUs revealed that a large proportion of the detected antisense RNAs arose from potentially spurious transcription initiation by alternative sigma factors and from imperfect control of transcription termination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicolas, Pierre -- Mader, Ulrike -- Dervyn, Etienne -- Rochat, Tatiana -- Leduc, Aurelie -- Pigeonneau, Nathalie -- Bidnenko, Elena -- Marchadier, Elodie -- Hoebeke, Mark -- Aymerich, Stephane -- Becher, Dorte -- Bisicchia, Paola -- Botella, Eric -- Delumeau, Olivier -- Doherty, Geoff -- Denham, Emma L -- Fogg, Mark J -- Fromion, Vincent -- Goelzer, Anne -- Hansen, Annette -- Hartig, Elisabeth -- Harwood, Colin R -- Homuth, Georg -- Jarmer, Hanne -- Jules, Matthieu -- Klipp, Edda -- Le Chat, Ludovic -- Lecointe, Francois -- Lewis, Peter -- Liebermeister, Wolfram -- March, Anika -- Mars, Ruben A T -- Nannapaneni, Priyanka -- Noone, David -- Pohl, Susanne -- Rinn, Bernd -- Rugheimer, Frank -- Sappa, Praveen K -- Samson, Franck -- Schaffer, Marc -- Schwikowski, Benno -- Steil, Leif -- Stulke, Jorg -- Wiegert, Thomas -- Devine, Kevin M -- Wilkinson, Anthony J -- van Dijl, Jan Maarten -- Hecker, Michael -- Volker, Uwe -- Bessieres, Philippe -- Noirot, Philippe -- New York, N.Y. -- Science. 2012 Mar 2;335(6072):1103-6. doi: 10.1126/science.1206848.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INRA, UR1077, Mathematique Informatique et Genome, Jouy-en-Josas, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22383849" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Algorithms ; Bacillus subtilis/*genetics/*physiology ; Binding Sites ; Gene Expression Profiling ; *Gene Expression Regulation, Bacterial ; Gene Regulatory Networks ; Oligonucleotide Array Sequence Analysis ; *Promoter Regions, Genetic ; RNA, Antisense/genetics/metabolism ; RNA, Bacterial/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; Regulon ; Sigma Factor/metabolism ; Terminator Regions, Genetic ; *Transcription, Genetic ; *Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-04-14
    Description: The mechanism of ion channel voltage gating-how channels open and close in response to voltage changes-has been debated since Hodgkin and Huxley's seminal discovery that the crux of nerve conduction is ion flow across cellular membranes. Using all-atom molecular dynamics simulations, we show how a voltage-gated potassium channel (KV) switches between activated and deactivated states. On deactivation, pore hydrophobic collapse rapidly halts ion flow. Subsequent voltage-sensing domain (VSD) relaxation, including inward, 15-angstrom S4-helix motion, completes the transition. On activation, outward S4 motion tightens the VSD-pore linker, perturbing linker-S6-helix packing. Fluctuations allow water, then potassium ions, to reenter the pore; linker-S6 repacking stabilizes the open pore. We propose a mechanistic model for the sodium/potassium/calcium voltage-gated ion channel superfamily that reconciles apparently conflicting experimental data.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jensen, Morten O -- Jogini, Vishwanath -- Borhani, David W -- Leffler, Abba E -- Dror, Ron O -- Shaw, David E -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):229-33. doi: 10.1126/science.1216533.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉D E Shaw Research, New York, NY 10036, USA. morten.jensen@DEShawResearch.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499946" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Hydrophobic and Hydrophilic Interactions ; *Ion Channel Gating ; Kv1.2 Potassium Channel/*chemistry/*metabolism ; Membrane Potentials ; Models, Biological ; Models, Molecular ; Molecular Dynamics Simulation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Shab Potassium Channels/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berns, Kenneth I -- Casadevall, Arturo -- Cohen, Murray L -- Ehrlich, Susan A -- Enquist, Lynn W -- Fitch, J Patrick -- Franz, David R -- Fraser-Liggett, Claire M -- Grant, Christine M -- Imperiale, Michael J -- Kanabrocki, Joseph -- Keim, Paul S -- Lemon, Stanley M -- Levy, Stuart B -- Lumpkin, John R -- Miller, Jeffery F -- Murch, Randall -- Nance, Mark E -- Osterholm, Michael T -- Relman, David A -- Roth, James A -- Vidaver, Anne K -- New York, N.Y. -- Science. 2012 Feb 10;335(6069):660-1. doi: 10.1126/science.1217994. Epub 2012 Jan 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genetics Institute, University of Florida, Gainesville, FL 32611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22294736" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; Advisory Committees ; Animals ; Biological Warfare Agents ; Containment of Biohazards ; Humans ; Influenza A Virus, H5N1 Subtype/*pathogenicity ; Influenza, Human/epidemiology/transmission/*virology ; National Institutes of Health (U.S.) ; Orthomyxoviridae Infections/transmission/*virology ; *Public Health ; *Publishing ; Risk Assessment ; Security Measures ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-05-19
    Description: Conspecific negative density-dependent establishment, in which local abundance negatively affects establishment of conspecific seedlings through host-specific enemies, can influence species diversity of plant communities, but the generality of this process is not well understood. We tested the strength of density dependence using the United States Forest Service's Forest Inventory and Analysis database containing 151 species from more than 200,000 forest plots spanning 4,000,000 square kilometers. We found that most species experienced conspecific negative density dependence (CNDD), but there was little effect of heterospecific density. Additionally, abundant species exhibited weaker CNDD than rarer species, and species-rich regions exhibited stronger CNDD than species-poor regions. Collectively, our results provide evidence that CNDD is a pervasive mechanism driving diversity across a gradient from boreal to subtropical forests.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Daniel J -- Beaulieu, Wesley T -- Bever, James D -- Clay, Keith -- New York, N.Y. -- Science. 2012 May 18;336(6083):904-7. doi: 10.1126/science.1220269.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington, IN 47405, USA. dj4@indiana.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22605774" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Databases, Factual ; *Ecosystem ; Seedlings/growth & development ; Species Specificity ; *Trees/growth & development ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-03-03
    Description: Although genetic control of morphogenesis is well established, elaboration of complex shapes requires changes in the mechanical properties of cells. In plants, the first visible sign of leaf formation is a bulge on the flank of the shoot apical meristem. Bulging results from local relaxation of cell walls, which causes them to yield to internal hydrostatic pressure. By manipulation of tissue tension in combination with quantitative live imaging and finite-element modeling, we found that the slow-growing area at the shoot tip is substantially strain-stiffened compared with surrounding fast-growing tissue. We propose that strain stiffening limits growth, restricts organ bulging, and contributes to the meristem's functional zonation. Thus, mechanical signals are not just passive readouts of gene action but feed back on morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kierzkowski, Daniel -- Nakayama, Naomi -- Routier-Kierzkowska, Anne-Lise -- Weber, Alain -- Bayer, Emmanuelle -- Schorderet, Martine -- Reinhardt, Didier -- Kuhlemeier, Cris -- Smith, Richard S -- New York, N.Y. -- Science. 2012 Mar 2;335(6072):1096-9. doi: 10.1126/science.1213100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Plant Sciences, University of Bern, Bern, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22383847" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Wall/physiology/ultrastructure ; Elasticity ; Hydrostatic Pressure ; Lycopersicon esculentum/cytology/*growth & development ; Meristem/cytology/*growth & development ; Models, Biological ; *Morphogenesis ; Osmolar Concentration ; Osmotic Pressure ; Plant Shoots/cytology/*growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-05-19
    Description: Cells promote polarized growth by activation of Rho-family protein Cdc42 at the cell membrane. We combined experiments and modeling to study bipolar growth initiation in fission yeast. Concentrations of a fluorescent marker for active Cdc42, Cdc42 protein, Cdc42-activator Scd1, and scaffold protein Scd2 exhibited anticorrelated fluctuations and oscillations with a 5-minute average period at polarized cell tips. These dynamics indicate competition for active Cdc42 or its regulators and the presence of positive and delayed negative feedbacks. Cdc42 oscillations and spatial distribution were sensitive to the amounts of Cdc42-activator Gef1 and to the activity of Cdc42-dependent kinase Pak1, a negative regulator. Feedbacks regulating Cdc42 oscillations and spatial self-organization appear to provide a flexible mechanism for fission yeast cells to explore polarization states and to control their morphology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681419/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681419/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Das, Maitreyi -- Drake, Tyler -- Wiley, David J -- Buchwald, Peter -- Vavylonis, Dimitrios -- Verde, Fulvia -- 1R01GM095867/GM/NIGMS NIH HHS/ -- R01 GM095867/GM/NIGMS NIH HHS/ -- R21 GM083928/GM/NIGMS NIH HHS/ -- R21GM083928/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):239-43. doi: 10.1126/science.1218377. Epub 2012 May 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Pharmacology (R-189), University of Miami Miller School of Medicine, Post Office Box 016189, Miami, FL 33101, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22604726" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/metabolism ; Guanine Nucleotide Exchange Factors/metabolism ; Microscopy, Fluorescence ; Models, Biological ; Mutation ; Recombinant Fusion Proteins/metabolism ; Schizosaccharomyces/cytology/*enzymology/genetics/*growth & development ; Schizosaccharomyces pombe Proteins/*metabolism ; cdc42 GTP-Binding Protein/*metabolism ; p21-Activated Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...