ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (56)
  • Crystallography, X-Ray  (47)
  • Cell Proliferation
  • Nature Publishing Group (NPG)  (123)
  • 2010-2014  (123)
  • 2012  (54)
  • 2010  (69)
Collection
Publisher
Years
  • 2010-2014  (123)
Year
  • 1
    Publication Date: 2010-12-24
    Description: Impulsivity, describing action without foresight, is an important feature of several psychiatric diseases, suicidality and violent behaviour. The complex origins of impulsivity hinder identification of the genes influencing it and the diseases with which it is associated. Here we perform exon-focused sequencing of impulsive individuals in a founder population, targeting fourteen genes belonging to the serotonin and dopamine domain. A stop codon in HTR2B was identified that is common (minor allele frequency 〉 1%) but exclusive to Finnish people. Expression of the gene in the human brain was assessed, as well as the molecular functionality of the stop codon, which was associated with psychiatric diseases marked by impulsivity in both population and family-based analyses. Knockout of Htr2b increased impulsive behaviours in mice, indicative of predictive validity. Our study shows the potential for identifying and tracing effects of rare alleles in complex behavioural phenotypes using founder populations, and indicates a role for HTR2B in impulsivity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183507/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183507/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bevilacqua, Laura -- Doly, Stephane -- Kaprio, Jaakko -- Yuan, Qiaoping -- Tikkanen, Roope -- Paunio, Tiina -- Zhou, Zhifeng -- Wedenoja, Juho -- Maroteaux, Luc -- Diaz, Silvina -- Belmer, Arnaud -- Hodgkinson, Colin A -- Dell'osso, Liliana -- Suvisaari, Jaana -- Coccaro, Emil -- Rose, Richard J -- Peltonen, Leena -- Virkkunen, Matti -- Goldman, David -- AA-09203/AA/NIAAA NIH HHS/ -- AA-12502/AA/NIAAA NIH HHS/ -- Z01 AA000301-09/Intramural NIH HHS/ -- Z01 AA000301-10/Intramural NIH HHS/ -- Z99 AA999999/Intramural NIH HHS/ -- England -- Nature. 2010 Dec 23;468(7327):1061-6. doi: 10.1038/nature09629.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland 20852, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21179162" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism ; Case-Control Studies ; Cell Line ; Female ; Finland ; Founder Effect ; Gene Expression Regulation ; Gene Knockout Techniques ; Genotype ; Humans ; Impulsive Behavior/*genetics ; Male ; Mental Disorders/genetics ; Mice ; Mice, 129 Strain ; Mice, Knockout ; Pedigree ; Polymorphism, Single Nucleotide/genetics ; Receptor, Serotonin, 5-HT2B/*genetics/*metabolism ; Testosterone/blood/cerebrospinal fluid
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-10-12
    Description: Antigen-presenting molecules, encoded by the major histocompatibility complex (MHC) and CD1 family, bind peptide- and lipid-based antigens, respectively, for recognition by T cells. Mucosal-associated invariant T (MAIT) cells are an abundant population of innate-like T cells in humans that are activated by an antigen(s) bound to the MHC class I-like molecule MR1. Although the identity of MR1-restricted antigen(s) is unknown, it is present in numerous bacteria and yeast. Here we show that the structure and chemistry within the antigen-binding cleft of MR1 is distinct from the MHC and CD1 families. MR1 is ideally suited to bind ligands originating from vitamin metabolites. The structure of MR1 in complex with 6-formyl pterin, a folic acid (vitamin B9) metabolite, shows the pterin ring sequestered within MR1. Furthermore, we characterize related MR1-restricted vitamin derivatives, originating from the bacterial riboflavin (vitamin B2) biosynthetic pathway, which specifically and potently activate MAIT cells. Accordingly, we show that metabolites of vitamin B represent a class of antigen that are presented by MR1 for MAIT-cell immunosurveillance. As many vitamin biosynthetic pathways are unique to bacteria and yeast, our data suggest that MAIT cells use these metabolites to detect microbial infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kjer-Nielsen, Lars -- Patel, Onisha -- Corbett, Alexandra J -- Le Nours, Jerome -- Meehan, Bronwyn -- Liu, Ligong -- Bhati, Mugdha -- Chen, Zhenjun -- Kostenko, Lyudmila -- Reantragoon, Rangsima -- Williamson, Nicholas A -- Purcell, Anthony W -- Dudek, Nadine L -- McConville, Malcolm J -- O'Hair, Richard A J -- Khairallah, George N -- Godfrey, Dale I -- Fairlie, David P -- Rossjohn, Jamie -- McCluskey, James -- England -- Nature. 2012 Nov 29;491(7426):717-23. doi: 10.1038/nature11605. Epub 2012 Oct 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology & Immunology, University of Melbourne, Parkville, Victoria 3010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23051753" target="_blank"〉PubMed〈/a〉
    Keywords: Antigen Presentation ; Bacterial Infections/immunology/microbiology ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Folic Acid/chemistry/immunology/*metabolism ; Histocompatibility Antigens/chemistry/immunology ; Histocompatibility Antigens Class I/*chemistry/*immunology/metabolism ; Humans ; Immunologic Surveillance/immunology ; Jurkat Cells ; Ligands ; Lymphocyte Activation ; Models, Molecular ; Protein Refolding/drug effects ; Pterins/*chemistry/*immunology/metabolism/pharmacology ; Salmonella/immunology/metabolism ; Salmonella Infections/immunology/microbiology ; Static Electricity ; T-Lymphocytes/*immunology ; beta 2-Microglobulin/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-08-17
    Description: Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (ENO1) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of ENO2. Here we show that short-hairpin-RNA-mediated silencing of ENO2 selectively inhibits growth, survival and the tumorigenic potential of ENO1-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to ENO1-deleted GBM cells relative to ENO1-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712624/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712624/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, Florian L -- Colla, Simona -- Aquilanti, Elisa -- Manzo, Veronica E -- Genovese, Giannicola -- Lee, Jaclyn -- Eisenson, Daniel -- Narurkar, Rujuta -- Deng, Pingna -- Nezi, Luigi -- Lee, Michelle A -- Hu, Baoli -- Hu, Jian -- Sahin, Ergun -- Ong, Derrick -- Fletcher-Sananikone, Eliot -- Ho, Dennis -- Kwong, Lawrence -- Brennan, Cameron -- Wang, Y Alan -- Chin, Lynda -- DePinho, Ronald A -- 3 P01 CA095616-08S1/CA/NCI NIH HHS/ -- 57006984/Howard Hughes Medical Institute/ -- P01 CA095616/CA/NCI NIH HHS/ -- P01CA95616/CA/NCI NIH HHS/ -- T32-CA009361/CA/NCI NIH HHS/ -- England -- Nature. 2012 Aug 16;488(7411):337-42. doi: 10.1038/nature11331.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22895339" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/pharmacology/therapeutic use ; Biomarkers, Tumor/deficiency/genetics ; Brain Neoplasms/*drug therapy/*genetics/pathology ; Cell Line, Tumor ; Cell Proliferation ; Chromosomes, Human, Pair 1/genetics ; DNA-Binding Proteins/deficiency/genetics ; Enzyme Inhibitors ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Genes, Essential/*genetics ; Genes, Tumor Suppressor ; Glioblastoma/*drug therapy/*genetics/pathology ; Homozygote ; Humans ; Hydroxamic Acids/pharmacology/therapeutic use ; Mice ; Molecular Targeted Therapy/*methods ; Neoplasm Transplantation ; Phosphonoacetic Acid/analogs & derivatives/pharmacology/therapeutic use ; Phosphopyruvate Hydratase/antagonists & inhibitors/deficiency/genetics/metabolism ; RNA, Small Interfering/genetics ; Sequence Deletion/*genetics ; Tumor Suppressor Proteins/deficiency/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-01-13
    Description: Retinoblastoma is an aggressive childhood cancer of the developing retina that is initiated by the biallelic loss of RB1. Tumours progress very quickly following RB1 inactivation but the underlying mechanism is not known. Here we show that the retinoblastoma genome is stable, but that multiple cancer pathways can be epigenetically deregulated. To identify the mutations that cooperate with RB1 loss, we performed whole-genome sequencing of retinoblastomas. The overall mutational rate was very low; RB1 was the only known cancer gene mutated. We then evaluated the role of RB1 in genome stability and considered non-genetic mechanisms of cancer pathway deregulation. For example, the proto-oncogene SYK is upregulated in retinoblastoma and is required for tumour cell survival. Targeting SYK with a small-molecule inhibitor induced retinoblastoma tumour cell death in vitro and in vivo. Thus, retinoblastomas may develop quickly as a result of the epigenetic deregulation of key cancer pathways as a direct or indirect result of RB1 loss.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289956/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3289956/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jinghui -- Benavente, Claudia A -- McEvoy, Justina -- Flores-Otero, Jacqueline -- Ding, Li -- Chen, Xiang -- Ulyanov, Anatoly -- Wu, Gang -- Wilson, Matthew -- Wang, Jianmin -- Brennan, Rachel -- Rusch, Michael -- Manning, Amity L -- Ma, Jing -- Easton, John -- Shurtleff, Sheila -- Mullighan, Charles -- Pounds, Stanley -- Mukatira, Suraj -- Gupta, Pankaj -- Neale, Geoff -- Zhao, David -- Lu, Charles -- Fulton, Robert S -- Fulton, Lucinda L -- Hong, Xin -- Dooling, David J -- Ochoa, Kerri -- Naeve, Clayton -- Dyson, Nicholas J -- Mardis, Elaine R -- Bahrami, Armita -- Ellison, David -- Wilson, Richard K -- Downing, James R -- Dyer, Michael A -- CA21765/CA/NCI NIH HHS/ -- CA64402/CA/NCI NIH HHS/ -- EY014867/EY/NEI NIH HHS/ -- EY018599/EY/NEI NIH HHS/ -- GM81607/GM/NIGMS NIH HHS/ -- R01 CA155202/CA/NCI NIH HHS/ -- R01 EY014867/EY/NEI NIH HHS/ -- R01 EY014867-02/EY/NEI NIH HHS/ -- R01 EY018599/EY/NEI NIH HHS/ -- R01 EY018599-03/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jan 11;481(7381):329-34. doi: 10.1038/nature10733.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computational Biology and Bioinformatics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22237022" target="_blank"〉PubMed〈/a〉
    Keywords: Aneuploidy ; Animals ; Cell Death/drug effects ; Cell Line ; Cell Survival/drug effects ; Chromosomal Instability/genetics ; Epigenesis, Genetic/*genetics ; Gene Expression Regulation, Neoplastic ; Genes, Retinoblastoma/genetics ; *Genomics ; Humans ; Intracellular Signaling Peptides and Proteins/antagonists & ; inhibitors/genetics/metabolism ; Mice ; *Molecular Targeted Therapy ; Mutation/genetics ; Protein Kinase Inhibitors/*pharmacology/therapeutic use ; Protein-Tyrosine Kinases/antagonists & inhibitors/genetics/metabolism ; Retinoblastoma/*drug therapy/*genetics/pathology ; Retinoblastoma Protein/deficiency/genetics ; Sequence Analysis, DNA ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-07-24
    Description: The identification of somatic activating mutations in JAK2 (refs 1-4) and in the thrombopoietin receptor gene (MPL) in most patients with myeloproliferative neoplasm (MPN) led to the clinical development of JAK2 kinase inhibitors. JAK2 inhibitor therapy improves MPN-associated splenomegaly and systemic symptoms but does not significantly decrease or eliminate the MPN clone in most patients with MPN. We therefore sought to characterize mechanisms by which MPN cells persist despite chronic inhibition of JAK2. Here we show that JAK2 inhibitor persistence is associated with reactivation of JAK-STAT signalling and with heterodimerization between activated JAK2 and JAK1 or TYK2, consistent with activation of JAK2 in trans by other JAK kinases. Further, this phenomenon is reversible: JAK2 inhibitor withdrawal is associated with resensitization to JAK2 kinase inhibitors and with reversible changes in JAK2 expression. We saw increased JAK2 heterodimerization and sustained JAK2 activation in cell lines, in murine models and in patients treated with JAK2 inhibitors. RNA interference and pharmacological studies show that JAK2-inhibitor-persistent cells remain dependent on JAK2 protein expression. Consequently, therapies that result in JAK2 degradation retain efficacy in persistent cells and may provide additional benefit to patients with JAK2-dependent malignancies treated with JAK2 inhibitors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991463/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991463/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koppikar, Priya -- Bhagwat, Neha -- Kilpivaara, Outi -- Manshouri, Taghi -- Adli, Mazhar -- Hricik, Todd -- Liu, Fan -- Saunders, Lindsay M -- Mullally, Ann -- Abdel-Wahab, Omar -- Leung, Laura -- Weinstein, Abby -- Marubayashi, Sachie -- Goel, Aviva -- Gonen, Mithat -- Estrov, Zeev -- Ebert, Benjamin L -- Chiosis, Gabriela -- Nimer, Stephen D -- Bernstein, Bradley E -- Verstovsek, Srdan -- Levine, Ross L -- 1R01CA151949-01/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- R01 CA151949/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Sep 6;489(7414):155-9. doi: 10.1038/nature11303.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22820254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Disease Models, Animal ; Drug Resistance, Neoplasm/drug effects ; Enzyme Activation/drug effects ; Gene Knockdown Techniques ; Granulocytes/drug effects/enzymology/metabolism ; HSP90 Heat-Shock Proteins/antagonists & inhibitors/metabolism ; Humans ; Janus Kinase 1/biosynthesis/deficiency/genetics/metabolism ; Janus Kinase 2/*antagonists & inhibitors/deficiency/genetics/*metabolism ; Mice ; Myeloproliferative Disorders/*drug therapy/enzymology/metabolism/pathology ; Phosphorylation ; Protein Biosynthesis ; *Protein Multimerization ; RNA Interference ; STAT Transcription Factors/*metabolism ; *Signal Transduction/drug effects ; TYK2 Kinase/biosynthesis/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-02
    Description: Haploids and double haploids are important resources for studying recessive traits and have large impacts on crop breeding, but natural haploids are rare in animals. Mammalian haploids are restricted to germline cells and are occasionally found in tumours with massive chromosome loss. Recent success in establishing haploid embryonic stem (ES) cells in medaka fish and mice raised the possibility of using engineered mammalian haploid cells in genetic studies. However, the availability and functional characterization of mammalian haploid ES cells are still limited. Here we show that mouse androgenetic haploid ES (ahES) cell lines can be established by transferring sperm into an enucleated oocyte. The ahES cells maintain haploidy and stable growth over 30 passages, express pluripotent markers, possess the ability to differentiate into all three germ layers in vitro and in vivo, and contribute to germlines of chimaeras when injected into blastocysts. Although epigenetically distinct from sperm cells, the ahES cells can produce viable and fertile progenies after intracytoplasmic injection into mature oocytes. The oocyte-injection procedure can also produce viable transgenic mice from genetically engineered ahES cells. Our findings show the developmental pluripotency of androgenentic haploids and provide a new tool to quickly produce genetic models for recessive traits. They may also shed new light on assisted reproduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Wei -- Shuai, Ling -- Wan, Haifeng -- Dong, Mingzhu -- Wang, Meng -- Sang, Lisi -- Feng, Chunjing -- Luo, Guan-Zheng -- Li, Tianda -- Li, Xin -- Wang, Libin -- Zheng, Qin-Yuan -- Sheng, Chao -- Wu, Hua-Jun -- Liu, Zhonghua -- Liu, Lei -- Wang, Liu -- Wang, Xiu-Jie -- Zhao, Xiao-Yang -- Zhou, Qi -- England -- Nature. 2012 Oct 18;490(7420):407-11. doi: 10.1038/nature11435. Epub 2012 Sep 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23023130" target="_blank"〉PubMed〈/a〉
    Keywords: Androgens/*metabolism ; Animals ; Biomarkers/metabolism ; Blastocyst/cytology ; Cell Line ; Cell Nucleus ; Chimera/embryology/genetics ; Embryonic Stem Cells/cytology/*physiology ; Epigenesis, Genetic ; Female ; *Haploidy ; Male ; Mice ; Mice, Transgenic/embryology/genetics/*growth & development ; Models, Animal ; Models, Genetic ; Oocytes/cytology/growth & development/metabolism ; Pluripotent Stem Cells/cytology/physiology ; Sperm Injections, Intracytoplasmic ; Spermatozoa/metabolism/transplantation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-08-20
    Description: Epigenetic modifications must underlie lineage-specific differentiation as terminally differentiated cells express tissue-specific genes, but their DNA sequence is unchanged. Haematopoiesis provides a well-defined model to study epigenetic modifications during cell-fate decisions, as multipotent progenitors (MPPs) differentiate into progressively restricted myeloid or lymphoid progenitors. Although DNA methylation is critical for myeloid versus lymphoid differentiation, as demonstrated by the myeloerythroid bias in Dnmt1 hypomorphs, a comprehensive DNA methylation map of haematopoietic progenitors, or of any multipotent/oligopotent lineage, does not exist. Here we examined 4.6 million CpG sites throughout the genome for MPPs, common lymphoid progenitors (CLPs), common myeloid progenitors (CMPs), granulocyte/macrophage progenitors (GMPs), and thymocyte progenitors (DN1, DN2, DN3). Marked epigenetic plasticity accompanied both lymphoid and myeloid restriction. Myeloid commitment involved less global DNA methylation than lymphoid commitment, supported functionally by myeloid skewing of progenitors following treatment with a DNA methyltransferase inhibitor. Differential DNA methylation correlated with gene expression more strongly at CpG island shores than CpG islands. Many examples of genes and pathways not previously known to be involved in choice between lymphoid/myeloid differentiation have been identified, such as Arl4c and Jdp2. Several transcription factors, including Meis1, were methylated and silenced during differentiation, indicating a role in maintaining an undifferentiated state. Additionally, epigenetic modification of modifiers of the epigenome seems to be important in haematopoietic differentiation. Our results directly demonstrate that modulation of DNA methylation occurs during lineage-specific differentiation and defines a comprehensive map of the methylation and transcriptional changes that accompany myeloid versus lymphoid fate decisions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956609/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956609/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ji, Hong -- Ehrlich, Lauren I R -- Seita, Jun -- Murakami, Peter -- Doi, Akiko -- Lindau, Paul -- Lee, Hwajin -- Aryee, Martin J -- Irizarry, Rafael A -- Kim, Kitai -- Rossi, Derrick J -- Inlay, Matthew A -- Serwold, Thomas -- Karsunky, Holger -- Ho, Lena -- Daley, George Q -- Weissman, Irving L -- Feinberg, Andrew P -- CA09151/CA/NCI NIH HHS/ -- F32 AI058521/AI/NIAID NIH HHS/ -- F32 AI058521-02/AI/NIAID NIH HHS/ -- F32AI058521/AI/NIAID NIH HHS/ -- P50 HG003233/HG/NHGRI NIH HHS/ -- P50 HG003233-07/HG/NHGRI NIH HHS/ -- P50 HG003233-08/HG/NHGRI NIH HHS/ -- P50HG003233/HG/NHGRI NIH HHS/ -- R00 AG029760/AG/NIA NIH HHS/ -- R00 AG029760-04/AG/NIA NIH HHS/ -- R00AGO29760/PHS HHS/ -- R01 AI047457/AI/NIAID NIH HHS/ -- R01 AI047457-04/AI/NIAID NIH HHS/ -- R01 AI047457-05/AI/NIAID NIH HHS/ -- R01 AI047458/AI/NIAID NIH HHS/ -- R01 CA086065/CA/NCI NIH HHS/ -- R01 GM083084/GM/NIGMS NIH HHS/ -- R01 GM083084-04/GM/NIGMS NIH HHS/ -- R01AI047457/AI/NIAID NIH HHS/ -- R01AI047458/AI/NIAID NIH HHS/ -- R37 CA054358/CA/NCI NIH HHS/ -- R37 CA054358-18/CA/NCI NIH HHS/ -- R37 CA054358-19/CA/NCI NIH HHS/ -- R37CA053458/CA/NCI NIH HHS/ -- England -- Nature. 2010 Sep 16;467(7313):338-42. doi: 10.1038/nature09367. Epub 2010 Aug 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Epigenetics and Department of Medicine, Johns Hopkins University School of Medicine, 570 Rangos, 725 N. Wolfe St., Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20720541" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; *Cell Lineage/genetics ; CpG Islands/genetics ; *DNA Methylation/genetics ; Epigenesis, Genetic ; Gene Expression Profiling ; Genome/genetics ; *Hematopoiesis/genetics ; Hematopoietic Stem Cells/*cytology/*metabolism ; Lymphocytes/cytology/metabolism ; Metabolome ; Metabolomics ; Mice ; Myeloid Cells/cytology/metabolism ; Pluripotent Stem Cells/cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-10-22
    Description: Aberrant expression of microRNAs (miRNAs) and the enzymes that control their processing have been reported in multiple biological processes including primary and metastatic tumours, but the mechanisms governing this are not clearly understood. Here we show that TAp63, a p53 family member, suppresses tumorigenesis and metastasis, and coordinately regulates Dicer and miR-130b to suppress metastasis. Metastatic mouse and human tumours deficient in TAp63 express Dicer at very low levels, and we found that modulation of expression of Dicer and miR-130b markedly affected the metastatic potential of cells lacking TAp63. TAp63 binds to and transactivates the Dicer promoter, demonstrating direct transcriptional regulation of Dicer by TAp63. These data provide a novel understanding of the roles of TAp63 in tumour and metastasis suppression through the coordinate transcriptional regulation of Dicer and miR-130b and may have implications for the many processes regulated by miRNAs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055799/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055799/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Xiaohua -- Chakravarti, Deepavali -- Cho, Min Soon -- Liu, Lingzhi -- Gi, Young Jin -- Lin, Yu-Li -- Leung, Marco L -- El-Naggar, Adel -- Creighton, Chad J -- Suraokar, Milind B -- Wistuba, Ignacio -- Flores, Elsa R -- 01DE019765/DE/NIDCR NIH HHS/ -- CA16672/CA/NCI NIH HHS/ -- P30 CA016672-27/CA/NCI NIH HHS/ -- P50 CA070907/CA/NCI NIH HHS/ -- P50 CA070907-10/CA/NCI NIH HHS/ -- P50 CA091846/CA/NCI NIH HHS/ -- P50 CA091846-10/CA/NCI NIH HHS/ -- P50CA070907/CA/NCI NIH HHS/ -- P50CA091846/CA/NCI NIH HHS/ -- U01 DE019765/DE/NIDCR NIH HHS/ -- U01 DE019765-03/DE/NIDCR NIH HHS/ -- England -- Nature. 2010 Oct 21;467(7318):986-90. doi: 10.1038/nature09459.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20962848" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Aging ; Cell Line ; Cell Line, Tumor ; DEAD-box RNA Helicases/biosynthesis/deficiency/genetics/*metabolism ; Endoribonucleases/genetics/*metabolism ; Female ; *Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor/physiology ; Genomic Instability ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; MicroRNAs/*biosynthesis/genetics/metabolism ; Neoplasm Metastasis/*genetics ; Neoplasms/genetics/pathology/secretion ; Phosphoproteins/deficiency/genetics/*metabolism ; Promoter Regions, Genetic/genetics ; Ribonuclease III/biosynthesis/deficiency/genetics/*metabolism ; Trans-Activators/deficiency/genetics/*metabolism ; Transcription Factors ; Transcriptional Activation ; Tumor Suppressor Proteins/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-06-11
    Description: The generation of reprogrammed induced pluripotent stem cells (iPSCs) from patients with defined genetic disorders holds the promise of increased understanding of the aetiologies of complex diseases and may also facilitate the development of novel therapeutic interventions. We have generated iPSCs from patients with LEOPARD syndrome (an acronym formed from its main features; that is, lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary valve stenosis, abnormal genitalia, retardation of growth and deafness), an autosomal-dominant developmental disorder belonging to a relatively prevalent class of inherited RAS-mitogen-activated protein kinase signalling diseases, which also includes Noonan syndrome, with pleomorphic effects on several tissues and organ systems. The patient-derived cells have a mutation in the PTPN11 gene, which encodes the SHP2 phosphatase. The iPSCs have been extensively characterized and produce multiple differentiated cell lineages. A major disease phenotype in patients with LEOPARD syndrome is hypertrophic cardiomyopathy. We show that in vitro-derived cardiomyocytes from LEOPARD syndrome iPSCs are larger, have a higher degree of sarcomeric organization and preferential localization of NFATC4 in the nucleus when compared with cardiomyocytes derived from human embryonic stem cells or wild-type iPSCs derived from a healthy brother of one of the LEOPARD syndrome patients. These features correlate with a potential hypertrophic state. We also provide molecular insights into signalling pathways that may promote the disease phenotype.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885001/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885001/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carvajal-Vergara, Xonia -- Sevilla, Ana -- D'Souza, Sunita L -- Ang, Yen-Sin -- Schaniel, Christoph -- Lee, Dung-Fang -- Yang, Lei -- Kaplan, Aaron D -- Adler, Eric D -- Rozov, Roye -- Ge, Yongchao -- Cohen, Ninette -- Edelmann, Lisa J -- Chang, Betty -- Waghray, Avinash -- Su, Jie -- Pardo, Sherly -- Lichtenbelt, Klaske D -- Tartaglia, Marco -- Gelb, Bruce D -- Lemischka, Ihor R -- 5R01GM078465/GM/NIGMS NIH HHS/ -- R01 GM078465/GM/NIGMS NIH HHS/ -- R01 GM078465-03/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jun 10;465(7299):808-12. doi: 10.1038/nature09005.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Gene and Cell Medicine, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York 10029, USA. xcarvajal@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20535210" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Cell Differentiation ; Cell Line ; Cell Lineage ; Cells, Cultured ; Embryonic Stem Cells/metabolism ; Enzyme Activation ; Female ; Fibroblasts/metabolism/pathology ; Gene Expression Profiling ; Homeodomain Proteins/genetics ; Humans ; Induced Pluripotent Stem Cells/enzymology/metabolism/*pathology ; LEOPARD Syndrome/drug therapy/metabolism/*pathology ; Male ; Mitogen-Activated Protein Kinases/metabolism ; *Models, Biological ; Myocytes, Cardiac/metabolism/pathology ; NFATC Transcription Factors/genetics/metabolism ; Octamer Transcription Factor-3/genetics ; Phosphoproteins/analysis ; Polymerase Chain Reaction ; *Precision Medicine ; Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics/metabolism ; SOXB1 Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-03-17
    Description: The vascular endothelial growth factors (VEGFs) are major angiogenic regulators and are involved in several aspects of endothelial cell physiology. However, the detailed role of VEGF-B in blood vessel function has remained unclear. Here we show that VEGF-B has an unexpected role in endothelial targeting of lipids to peripheral tissues. Dietary lipids present in circulation have to be transported through the vascular endothelium to be metabolized by tissue cells, a mechanism that is poorly understood. Bioinformatic analysis showed that Vegfb was tightly co-expressed with nuclear-encoded mitochondrial genes across a large variety of physiological conditions in mice, pointing to a role for VEGF-B in metabolism. VEGF-B specifically controlled endothelial uptake of fatty acids via transcriptional regulation of vascular fatty acid transport proteins. As a consequence, Vegfb(-/-) mice showed less uptake and accumulation of lipids in muscle, heart and brown adipose tissue, and instead shunted lipids to white adipose tissue. This regulation was mediated by VEGF receptor 1 and neuropilin 1 expressed by the endothelium. The co-expression of VEGF-B and mitochondrial proteins introduces a novel regulatory mechanism, whereby endothelial lipid uptake and mitochondrial lipid use are tightly coordinated. The involvement of VEGF-B in lipid uptake may open up the possibility for novel strategies to modulate pathological lipid accumulation in diabetes, obesity and cardiovascular diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagberg, Carolina E -- Falkevall, Annelie -- Wang, Xun -- Larsson, Erik -- Huusko, Jenni -- Nilsson, Ingrid -- van Meeteren, Laurens A -- Samen, Erik -- Lu, Li -- Vanwildemeersch, Maarten -- Klar, Joakim -- Genove, Guillem -- Pietras, Kristian -- Stone-Elander, Sharon -- Claesson-Welsh, Lena -- Yla-Herttuala, Seppo -- Lindahl, Per -- Eriksson, Ulf -- England -- Nature. 2010 Apr 8;464(7290):917-21. doi: 10.1038/nature08945. Epub 2010 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tissue Biology Group, Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20228789" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/metabolism ; Adipose Tissue, White/metabolism ; Animals ; Biological Transport ; Cell Line ; Cell Nucleus/genetics ; Cells, Cultured ; Endothelium/cytology/*metabolism ; Fatty Acid Transport Proteins/genetics ; Fatty Acids/*metabolism ; Gene Expression Regulation ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondria/genetics/metabolism ; Mitochondrial Proteins/genetics/metabolism ; Muscles/metabolism ; Myocardium/metabolism ; Neuropilin-1/genetics/metabolism ; Oligonucleotide Array Sequence Analysis ; Organ Specificity ; Signal Transduction ; Transcription, Genetic ; Vascular Endothelial Growth Factor B/deficiency/genetics/*metabolism ; Vascular Endothelial Growth Factor Receptor-1/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...