ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (51)
  • Binding Sites  (25)
  • American Association for the Advancement of Science (AAAS)  (64)
  • Springer Nature
  • 2000-2004  (64)
  • 1995-1999
  • 1980-1984
  • 1970-1974
  • 1940-1944
  • 2001  (64)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (64)
  • Springer Nature
Years
  • 2000-2004  (64)
  • 1995-1999
  • 1980-1984
  • 1970-1974
  • 1940-1944
Year
  • 1
    Publication Date: 2001-12-18
    Description: The 5.67-megabase genome of the plant pathogen Agrobacterium tumefaciens C58 consists of a circular chromosome, a linear chromosome, and two plasmids. Extensive orthology and nucleotide colinearity between the genomes of A. tumefaciens and the plant symbiont Sinorhizobium meliloti suggest a recent evolutionary divergence. Their similarities include metabolic, transport, and regulatory systems that promote survival in the highly competitive rhizosphere; differences are apparent in their genome structure and virulence gene complement. Availability of the A. tumefaciens sequence will facilitate investigations into the molecular basis of pathogenesis and the evolutionary divergence of pathogenic and symbiotic lifestyles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, D W -- Setubal, J C -- Kaul, R -- Monks, D E -- Kitajima, J P -- Okura, V K -- Zhou, Y -- Chen, L -- Wood, G E -- Almeida, N F Jr -- Woo, L -- Chen, Y -- Paulsen, I T -- Eisen, J A -- Karp, P D -- Bovee, D Sr -- Chapman, P -- Clendenning, J -- Deatherage, G -- Gillet, W -- Grant, C -- Kutyavin, T -- Levy, R -- Li, M J -- McClelland, E -- Palmieri, A -- Raymond, C -- Rouse, G -- Saenphimmachak, C -- Wu, Z -- Romero, P -- Gordon, D -- Zhang, S -- Yoo, H -- Tao, Y -- Biddle, P -- Jung, M -- Krespan, W -- Perry, M -- Gordon-Kamm, B -- Liao, L -- Kim, S -- Hendrick, C -- Zhao, Z Y -- Dolan, M -- Chumley, F -- Tingey, S V -- Tomb, J F -- Gordon, M P -- Olson, M V -- Nester, E W -- GM19642/GM/NIGMS NIH HHS/ -- GM32618/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2317-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Washington, 1959 NE Pacific Street, Box 357242, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743193" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium tumefaciens/classification/*genetics/pathogenicity/physiology ; Bacterial Adhesion/genetics ; Bacterial Proteins/genetics/metabolism ; Carrier Proteins/genetics/metabolism ; Chromosomes, Bacterial/genetics ; Conjugation, Genetic ; DNA Replication ; Genes, Bacterial ; Genes, Regulator ; *Genome, Bacterial ; Membrane Proteins/genetics/metabolism ; Molecular Sequence Data ; Phylogeny ; Plants/microbiology ; Plasmids ; Replicon ; Rhizobiaceae/genetics/physiology ; *Sequence Analysis, DNA ; Sinorhizobium meliloti/genetics/physiology ; Symbiosis ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-09-15
    Description: Within the endemic invertebrate faunas of hydrothermal vents, five biogeographic provinces are recognized. Invertebrates at two Indian Ocean vent fields (Kairei and Edmond) belong to a sixth province, despite ecological settings and invertebrate-bacterial symbioses similar to those of both western Pacific and Atlantic vents. Most organisms found at these Indian Ocean vent fields have evolutionary affinities with western Pacific vent faunas, but a shrimp that ecologically dominates Indian Ocean vents closely resembles its Mid-Atlantic counterpart. These findings contribute to a global assessment of the biogeography of chemosynthetic faunas and indicate that the Indian Ocean vent community follows asymmetric assembly rules biased toward Pacific evolutionary alliances.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van Dover, C L -- Humphris, S E -- Fornari, D -- Cavanaugh, C M -- Collier, R -- Goffredi, S K -- Hashimoto, J -- Lilley, M D -- Reysenbach, A L -- Shank, T M -- Von Damm, K L -- Banta, A -- Gallant, R M -- Gotz, D -- Green, D -- Hall, J -- Harmer, T L -- Hurtado, L A -- Johnson, P -- McKiness, Z P -- Meredith, C -- Olson, E -- Pan, I L -- Turnipseed, M -- Won, Y -- Young, C R 3rd -- Vrijenhoek, R C -- New York, N.Y. -- Science. 2001 Oct 26;294(5543):818-23. Epub 2001 Sep 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, College of William & Mary, Williamsburg, VA 23187, USA. cindy_vandover@wm.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11557843" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/classification/isolation & purification ; *Bacterial Physiological Phenomena ; Biological Evolution ; Biomass ; Decapoda (Crustacea)/classification/physiology ; *Ecosystem ; Euryarchaeota/classification/isolation & purification/physiology ; Geography ; *Geologic Sediments/microbiology ; Hot Temperature ; Invertebrates/classification/microbiology/*physiology ; Molecular Sequence Data ; Mollusca/classification/physiology ; Oceans and Seas ; Seawater ; Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-03-27
    Description: Protein actions are usually discussed in terms of static structures, but function requires motion. We find a strong correlation between phosphorylation-driven activation of the signaling protein NtrC and microsecond time-scale backbone dynamics. Using nuclear magnetic resonance relaxation, we characterized the motions of NtrC in three functional states: unphosphorylated (inactive), phosphorylated (active), and a partially active mutant. These dynamics are indicative of exchange between inactive and active conformations. Both states are populated in unphosphorylated NtrC, and phosphorylation shifts the equilibrium toward the active species. These results support a dynamic population shift between two preexisting conformations as the underlying mechanism of activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Volkman, B F -- Lipson, D -- Wemmer, D E -- Kern, D -- GM62117/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2429-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264542" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; *Bacterial Proteins ; Binding Sites ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Models, Molecular ; Motion ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; PII Nitrogen Regulatory Proteins ; Phosphorylation ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; Time ; *Trans-Activators ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-06-02
    Description: Acetylation of core histone tails plays a fundamental role in transcription regulation. In addition to acetylation, other posttranslational modifications, such as phosphorylation and methylation, occur in core histone tails. Here, we report the purification, molecular identification, and functional characterization of a histone H4-specific methyltransferase PRMT1, a protein arginine methyltransferase. PRMT1 specifically methylates arginine 3 (Arg 3) of H4 in vitro and in vivo. Methylation of Arg 3 by PRMT1 facilitates subsequent acetylation of H4 tails by p300. However, acetylation of H4 inhibits its methylation by PRMT1. Most important, a mutation in the S-adenosyl-l-methionine-binding site of PRMT1 substantially crippled its nuclear receptor coactivator activity. Our finding reveals Arg 3 of H4 as a novel methylation site by PRMT1 and indicates that Arg 3 methylation plays an important role in transcriptional regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H -- Huang, Z Q -- Xia, L -- Feng, Q -- Erdjument-Bromage, H -- Strahl, B D -- Briggs, S D -- Allis, C D -- Wong, J -- Tempst, P -- Zhang, Y -- GM63067-01/GM/NIGMS NIH HHS/ -- P30 CA08748/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):853-7. Epub 2001 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11387442" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Animals ; Arginine/*metabolism ; Binding Sites ; Cell Nucleus/metabolism ; HeLa Cells ; Histones/chemistry/*metabolism ; Humans ; Hydroxamic Acids/pharmacology ; Intracellular Signaling Peptides and Proteins ; Lysine/metabolism ; Methylation ; Methyltransferases/chemistry/genetics/isolation & purification/*metabolism ; Molecular Sequence Data ; Mutation ; Oocytes ; Protein-Arginine N-Methyltransferases ; Receptors, Androgen/*metabolism ; Recombinant Proteins/metabolism ; S-Adenosylmethionine/metabolism ; *Transcriptional Activation ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-10-27
    Description: Skeletal muscle adapts to decreases in activity and load by undergoing atrophy. To identify candidate molecular mediators of muscle atrophy, we performed transcript profiling. Although many genes were up-regulated in a single rat model of atrophy, only a small subset was universal in all atrophy models. Two of these genes encode ubiquitin ligases: Muscle RING Finger 1 (MuRF1), and a gene we designate Muscle Atrophy F-box (MAFbx), the latter being a member of the SCF family of E3 ubiquitin ligases. Overexpression of MAFbx in myotubes produced atrophy, whereas mice deficient in either MAFbx or MuRF1 were found to be resistant to atrophy. These proteins are potential drug targets for the treatment of muscle atrophy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bodine, S C -- Latres, E -- Baumhueter, S -- Lai, V K -- Nunez, L -- Clarke, B A -- Poueymirou, W T -- Panaro, F J -- Na, E -- Dharmarajan, K -- Pan, Z Q -- Valenzuela, D M -- DeChiara, T M -- Stitt, T N -- Yancopoulos, G D -- Glass, D J -- New York, N.Y. -- Science. 2001 Nov 23;294(5547):1704-8. Epub 2001 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591-6707, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679633" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cloning, Molecular ; Creatine Kinase/genetics ; Creatine Kinase, MM Form ; *DNA-Binding Proteins ; Gene Deletion ; *Gene Expression Profiling ; Hindlimb Suspension ; Humans ; Immobilization ; Isoenzymes/genetics ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Muscle Denervation ; Muscle Proteins/genetics ; Muscle, Skeletal/growth & development/*metabolism/pathology/physiopathology ; Muscular Atrophy/*genetics/pathology/physiopathology ; MyoD Protein/genetics ; Myogenic Regulatory Factor 5 ; Myogenin/genetics ; Peptide Synthases/chemistry/deficiency/genetics/*metabolism ; Phenotype ; Protein Binding ; RNA, Messenger/analysis/genetics ; Rats ; Rats, Sprague-Dawley ; SKP Cullin F-Box Protein Ligases ; *Trans-Activators ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-02-07
    Description: Atomic force microscopy and single-molecule force spectroscopy were combined to image and manipulate purple membrane patches from Halobacterium salinarum. Individual bacteriorhodopsin molecules were first localized and then extracted from the membrane; the remaining vacancies were imaged again. Anchoring forces between 100 and 200 piconewtons for the different helices were found. Upon extraction, the helices were found to unfold. The force spectra revealed the individuality of the unfolding pathways. Helices G and F as well as helices E and D always unfolded pairwise, whereas helices B and C occasionally unfolded one after the other. Experiments with cleaved loops revealed the origin of the individuality: stabilization of helix B by neighboring helices.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oesterhelt, F -- Oesterhelt, D -- Pfeiffer, M -- Engel, A -- Gaub, H E -- Muller, D J -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):143-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CeNS and Lehrstuhl fur angewandte Physik, Ludwig Maximilians-Universitat Munchen, Amalienstrasse 54, 80799 Munchen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753119" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriorhodopsins/*chemistry/genetics ; Cysteine/chemistry ; Halobacterium salinarum/*chemistry ; Membrane Proteins/*chemistry/genetics ; *Microscopy, Atomic Force ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Denaturation ; *Protein Folding ; Protein Structure, Secondary ; Purple Membrane/*chemistry ; Serine Endopeptidases/metabolism ; Spectrum Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2001-04-21
    Description: Structures of a 10-subunit yeast RNA polymerase II have been derived from two crystal forms at 2.8 and 3.1 angstrom resolution. Comparison of the structures reveals a division of the polymerase into four mobile modules, including a clamp, shown previously to swing over the active center. In the 2.8 angstrom structure, the clamp is in an open state, allowing entry of straight promoter DNA for the initiation of transcription. Three loops extending from the clamp may play roles in RNA unwinding and DNA rewinding during transcription. A 2.8 angstrom difference Fourier map reveals two metal ions at the active site, one persistently bound and the other possibly exchangeable during RNA synthesis. The results also provide evidence for RNA exit in the vicinity of the carboxyl-terminal repeat domain, coupling synthesis to RNA processing by enzymes bound to this domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cramer, P -- Bushnell, D A -- Kornberg, R D -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1863-76. Epub 2001 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11313498" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Conserved Sequence ; Crystallography, X-Ray ; DNA, Fungal/chemistry/metabolism ; Fourier Analysis ; Hydrogen Bonding ; Magnesium/metabolism ; Metals/metabolism ; Models, Molecular ; Molecular Sequence Data ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; RNA Polymerase II/*chemistry/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Fungal/biosynthesis/chemistry/metabolism ; RNA, Messenger/biosynthesis/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Transcription Factors/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2001-08-18
    Description: B cell homeostasis has been shown to critically depend on BAFF, the B cell activation factor from the tumor necrosis factor (TNF) family. Although BAFF is already known to bind two receptors, BCMA and TACI, we have identified a third receptor for BAFF that we have termed BAFF-R. BAFF-R binding appears to be highly specific for BAFF, suggesting a unique role for this ligand-receptor interaction. Consistent with this, the BAFF-R locus is disrupted in A/WySnJ mice, which display a B cell phenotype qualitatively similar to that of the BAFF-deficient mice. Thus, BAFF-R appears to be the principal receptor for BAFF-mediated mature B cell survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thompson, J S -- Bixler, S A -- Qian, F -- Vora, K -- Scott, M L -- Cachero, T G -- Hession, C -- Schneider, P -- Sizing, I D -- Mullen, C -- Strauch, K -- Zafari, M -- Benjamin, C D -- Tschopp, J -- Browning, J L -- Ambrose, C -- New York, N.Y. -- Science. 2001 Sep 14;293(5537):2108-11. Epub 2001 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biogen, 12 Cambridge Center, Cambridge, MA 02142, USA., The Institute of Biochemistry, University of Lausanne, CH-1066, Epalinges, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509692" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Cell Activating Factor ; B-Cell Activation Factor Receptor ; B-Cell Maturation Antigen ; B-Lymphocytes/immunology/metabolism/*physiology ; Cell Line ; Chromosome Mapping ; Chromosomes, Human, Pair 22 ; Cloning, Molecular ; Homeostasis ; Humans ; Ligands ; Lymphoid Tissue/metabolism ; Male ; Membrane Proteins/*metabolism ; Mice ; Mice, Inbred A ; Mice, Inbred C57BL ; Molecular Sequence Data ; RNA, Messenger/chemistry/genetics/metabolism ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection ; Transmembrane Activator and CAML Interactor Protein ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2001-08-04
    Description: One of the most dominant influences in the patterning of multicellular embryos is exerted by the Hedgehog (Hh) family of secreted signaling proteins. Here, we identify a segment polarity gene in Drosophila melanogaster, skinny hedgehog (ski), and show that its product is required in Hh-expressing cells for production of appropriate signaling activity in embryos and in the imaginal precursors of adult tissues. The ski gene encodes an apparent acyltransferase, and we provide genetic and biochemical evidence that Hh proteins from ski mutant cells retain carboxyl-terminal cholesterol modification but lack amino-terminal palmitate modification. Our results suggest that ski encodes an enzyme that acts within the secretory pathway to catalyze amino-terminal palmitoylation of Hh, and further demonstrate that this lipid modification is required for the embryonic and larval patterning activities of the Hh signal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chamoun, Z -- Mann, R K -- Nellen, D -- von Kessler, D P -- Bellotto, M -- Beachy, P A -- Basler, K -- New York, N.Y. -- Science. 2001 Sep 14;293(5537):2080-4. Epub 2001 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Molekularbiologie and Zoologisches Institut, Universitat Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486055" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Acyltransferases/chemistry/*genetics/*metabolism ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Body Patterning ; Cholesterol/metabolism ; *Drosophila Proteins ; Drosophila melanogaster/embryology/*genetics/growth & development/metabolism ; Gene Expression ; Genes, Insect ; Hedgehog Proteins ; Insect Proteins/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Palmitic Acid/*metabolism ; Protein Structure, Tertiary ; *Signal Transduction ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2001-09-08
    Description: Recently we reported that antibodies can generate hydrogen peroxide (H2O2) from singlet molecular oxygen (1O2*). We now show that this process is catalytic, and we identify the electron source for a quasi-unlimited generation of H2O2. Antibodies produce up to 500 mole equivalents of H2O2 from 1O2*, without a reduction in rate, and we have excluded metals or Cl- as the electron source. On the basis of isotope incorporation experiments and kinetic data, we propose that antibodies use H2O as an electron source, facilitating its addition to 1O2* to form H2O3 as the first intermediate in a reaction cascade that eventually leads to H2O2. X-ray crystallographic studies with xenon point to putative conserved oxygen binding sites within the antibody fold where this chemistry could be initiated. Our findings suggest a protective function of immunoglobulins against 1O2* and raise the question of whether the need to detoxify 1O2* has played a decisive role in the evolution of the immunoglobulin fold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wentworth , P Jr -- Jones, L H -- Wentworth, A D -- Zhu, X -- Larsen, N A -- Wilson, I A -- Xu, X -- Goddard , W A 3rd -- Janda, K D -- Eschenmoser, A -- Lerner, R A -- CA27489/CA/NCI NIH HHS/ -- GM43858/GM/NIGMS NIH HHS/ -- HD 36385/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1806-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546867" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Catalytic/chemistry/*metabolism ; Binding Sites ; Catalysis ; Conserved Sequence ; Crystallography, X-Ray ; Humans ; Hydrogen Peroxide/*metabolism ; Kinetics ; Models, Molecular ; Oxidants/chemistry/*metabolism ; Oxidation-Reduction ; Oxygen/*metabolism ; Protein Conformation ; Singlet Oxygen ; Spectrometry, Mass, Electrospray Ionization ; Thermodynamics ; Tryptophan/metabolism ; Ultraviolet Rays ; Water/*chemistry/*metabolism ; Xenon/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...