ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (1,798)
  • American Association for the Advancement of Science (AAAS)  (1,215)
  • 2010-2014
  • 2000-2004  (3,013)
  • 2002  (1,195)
  • 2001  (1,818)
Collection
Publisher
Years
  • 2010-2014
  • 2000-2004  (3,013)
Year
  • 1
    Publication Date: 2002-06-01
    Description: The high degree of similarity between the mouse and human genomes is demonstrated through analysis of the sequence of mouse chromosome 16 (Mmu 16), which was obtained as part of a whole-genome shotgun assembly of the mouse genome. The mouse genome is about 10% smaller than the human genome, owing to a lower repetitive DNA content. Comparison of the structure and protein-coding potential of Mmu 16 with that of the homologous segments of the human genome identifies regions of conserved synteny with human chromosomes (Hsa) 3, 8, 12, 16, 21, and 22. Gene content and order are highly conserved between Mmu 16 and the syntenic blocks of the human genome. Of the 731 predicted genes on Mmu 16, 509 align with orthologs on the corresponding portions of the human genome, 44 are likely paralogous to these genes, and 164 genes have homologs elsewhere in the human genome; there are 14 genes for which we could find no human counterpart.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mural, Richard J -- Adams, Mark D -- Myers, Eugene W -- Smith, Hamilton O -- Miklos, George L Gabor -- Wides, Ron -- Halpern, Aaron -- Li, Peter W -- Sutton, Granger G -- Nadeau, Joe -- Salzberg, Steven L -- Holt, Robert A -- Kodira, Chinnappa D -- Lu, Fu -- Chen, Lin -- Deng, Zuoming -- Evangelista, Carlos C -- Gan, Weiniu -- Heiman, Thomas J -- Li, Jiayin -- Li, Zhenya -- Merkulov, Gennady V -- Milshina, Natalia V -- Naik, Ashwinikumar K -- Qi, Rong -- Shue, Bixiong Chris -- Wang, Aihui -- Wang, Jian -- Wang, Xin -- Yan, Xianghe -- Ye, Jane -- Yooseph, Shibu -- Zhao, Qi -- Zheng, Liansheng -- Zhu, Shiaoping C -- Biddick, Kendra -- Bolanos, Randall -- Delcher, Arthur L -- Dew, Ian M -- Fasulo, Daniel -- Flanigan, Michael J -- Huson, Daniel H -- Kravitz, Saul A -- Miller, Jason R -- Mobarry, Clark M -- Reinert, Knut -- Remington, Karin A -- Zhang, Qing -- Zheng, Xiangqun H -- Nusskern, Deborah R -- Lai, Zhongwu -- Lei, Yiding -- Zhong, Wenyan -- Yao, Alison -- Guan, Ping -- Ji, Rui-Ru -- Gu, Zhiping -- Wang, Zhen-Yuan -- Zhong, Fei -- Xiao, Chunlin -- Chiang, Chia-Chien -- Yandell, Mark -- Wortman, Jennifer R -- Amanatides, Peter G -- Hladun, Suzanne L -- Pratts, Eric C -- Johnson, Jeffery E -- Dodson, Kristina L -- Woodford, Kerry J -- Evans, Cheryl A -- Gropman, Barry -- Rusch, Douglas B -- Venter, Eli -- Wang, Mei -- Smith, Thomas J -- Houck, Jarrett T -- Tompkins, Donald E -- Haynes, Charles -- Jacob, Debbie -- Chin, Soo H -- Allen, David R -- Dahlke, Carl E -- Sanders, Robert -- Li, Kelvin -- Liu, Xiangjun -- Levitsky, Alexander A -- Majoros, William H -- Chen, Quan -- Xia, Ashley C -- Lopez, John R -- Donnelly, Michael T -- Newman, Matthew H -- Glodek, Anna -- Kraft, Cheryl L -- Nodell, Marc -- Ali, Feroze -- An, Hui-Jin -- Baldwin-Pitts, Danita -- Beeson, Karen Y -- Cai, Shuang -- Carnes, Mark -- Carver, Amy -- Caulk, Parris M -- Center, Angela -- Chen, Yen-Hui -- Cheng, Ming-Lai -- Coyne, My D -- Crowder, Michelle -- Danaher, Steven -- Davenport, Lionel B -- Desilets, Raymond -- Dietz, Susanne M -- Doup, Lisa -- Dullaghan, Patrick -- Ferriera, Steven -- Fosler, Carl R -- Gire, Harold C -- Gluecksmann, Andres -- Gocayne, Jeannine D -- Gray, Jonathan -- Hart, Brit -- Haynes, Jason -- Hoover, Jeffery -- Howland, Tim -- Ibegwam, Chinyere -- Jalali, Mena -- Johns, David -- Kline, Leslie -- Ma, Daniel S -- MacCawley, Steven -- Magoon, Anand -- Mann, Felecia -- May, David -- McIntosh, Tina C -- Mehta, Somil -- Moy, Linda -- Moy, Mee C -- Murphy, Brian J -- Murphy, Sean D -- Nelson, Keith A -- Nuri, Zubeda -- Parker, Kimberly A -- Prudhomme, Alexandre C -- Puri, Vinita N -- Qureshi, Hina -- Raley, John C -- Reardon, Matthew S -- Regier, Megan A -- Rogers, Yu-Hui C -- Romblad, Deanna L -- Schutz, Jakob -- Scott, John L -- Scott, Richard -- Sitter, Cynthia D -- Smallwood, Michella -- Sprague, Arlan C -- Stewart, Erin -- Strong, Renee V -- Suh, Ellen -- Sylvester, Karena -- Thomas, Reginald -- Tint, Ni Ni -- Tsonis, Christopher -- Wang, Gary -- Wang, George -- Williams, Monica S -- Williams, Sherita M -- Windsor, Sandra M -- Wolfe, Keriellen -- Wu, Mitchell M -- Zaveri, Jayshree -- Chaturvedi, Kabir -- Gabrielian, Andrei E -- Ke, Zhaoxi -- Sun, Jingtao -- Subramanian, Gangadharan -- Venter, J Craig -- Pfannkoch, Cynthia M -- Barnstead, Mary -- Stephenson, Lisa D -- New York, N.Y. -- Science. 2002 May 31;296(5573):1661-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA. richard.mural@celera.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12040188" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Chromosomes/*genetics ; Chromosomes, Human/genetics ; Computational Biology ; Conserved Sequence ; Databases, Nucleic Acid ; Evolution, Molecular ; Genes ; Genetic Markers ; *Genome ; *Genome, Human ; Genomics ; Humans ; Mice ; Mice, Inbred A/genetics ; Mice, Inbred DBA/genetics ; Mice, Inbred Strains/*genetics ; Molecular Sequence Data ; Physical Chromosome Mapping ; Proteins/chemistry/genetics ; Sequence Alignment ; *Sequence Analysis, DNA ; Species Specificity ; *Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-02-22
    Description: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venter, J C -- Adams, M D -- Myers, E W -- Li, P W -- Mural, R J -- Sutton, G G -- Smith, H O -- Yandell, M -- Evans, C A -- Holt, R A -- Gocayne, J D -- Amanatides, P -- Ballew, R M -- Huson, D H -- Wortman, J R -- Zhang, Q -- Kodira, C D -- Zheng, X H -- Chen, L -- Skupski, M -- Subramanian, G -- Thomas, P D -- Zhang, J -- Gabor Miklos, G L -- Nelson, C -- Broder, S -- Clark, A G -- Nadeau, J -- McKusick, V A -- Zinder, N -- Levine, A J -- Roberts, R J -- Simon, M -- Slayman, C -- Hunkapiller, M -- Bolanos, R -- Delcher, A -- Dew, I -- Fasulo, D -- Flanigan, M -- Florea, L -- Halpern, A -- Hannenhalli, S -- Kravitz, S -- Levy, S -- Mobarry, C -- Reinert, K -- Remington, K -- Abu-Threideh, J -- Beasley, E -- Biddick, K -- Bonazzi, V -- Brandon, R -- Cargill, M -- Chandramouliswaran, I -- Charlab, R -- Chaturvedi, K -- Deng, Z -- Di Francesco, V -- Dunn, P -- Eilbeck, K -- Evangelista, C -- Gabrielian, A E -- Gan, W -- Ge, W -- Gong, F -- Gu, Z -- Guan, P -- Heiman, T J -- Higgins, M E -- Ji, R R -- Ke, Z -- Ketchum, K A -- Lai, Z -- Lei, Y -- Li, Z -- Li, J -- Liang, Y -- Lin, X -- Lu, F -- Merkulov, G V -- Milshina, N -- Moore, H M -- Naik, A K -- Narayan, V A -- Neelam, B -- Nusskern, D -- Rusch, D B -- Salzberg, S -- Shao, W -- Shue, B -- Sun, J -- Wang, Z -- Wang, A -- Wang, X -- Wang, J -- Wei, M -- Wides, R -- Xiao, C -- Yan, C -- Yao, A -- Ye, J -- Zhan, M -- Zhang, W -- Zhang, H -- Zhao, Q -- Zheng, L -- Zhong, F -- Zhong, W -- Zhu, S -- Zhao, S -- Gilbert, D -- Baumhueter, S -- Spier, G -- Carter, C -- Cravchik, A -- Woodage, T -- Ali, F -- An, H -- Awe, A -- Baldwin, D -- Baden, H -- Barnstead, M -- Barrow, I -- Beeson, K -- Busam, D -- Carver, A -- Center, A -- Cheng, M L -- Curry, L -- Danaher, S -- Davenport, L -- Desilets, R -- Dietz, S -- Dodson, K -- Doup, L -- Ferriera, S -- Garg, N -- Gluecksmann, A -- Hart, B -- Haynes, J -- Haynes, C -- Heiner, C -- Hladun, S -- Hostin, D -- Houck, J -- Howland, T -- Ibegwam, C -- Johnson, J -- Kalush, F -- Kline, L -- Koduru, S -- Love, A -- Mann, F -- May, D -- McCawley, S -- McIntosh, T -- McMullen, I -- Moy, M -- Moy, L -- Murphy, B -- Nelson, K -- Pfannkoch, C -- Pratts, E -- Puri, V -- Qureshi, H -- Reardon, M -- Rodriguez, R -- Rogers, Y H -- Romblad, D -- Ruhfel, B -- Scott, R -- Sitter, C -- Smallwood, M -- Stewart, E -- Strong, R -- Suh, E -- Thomas, R -- Tint, N N -- Tse, S -- Vech, C -- Wang, G -- Wetter, J -- Williams, S -- Williams, M -- Windsor, S -- Winn-Deen, E -- Wolfe, K -- Zaveri, J -- Zaveri, K -- Abril, J F -- Guigo, R -- Campbell, M J -- Sjolander, K V -- Karlak, B -- Kejariwal, A -- Mi, H -- Lazareva, B -- Hatton, T -- Narechania, A -- Diemer, K -- Muruganujan, A -- Guo, N -- Sato, S -- Bafna, V -- Istrail, S -- Lippert, R -- Schwartz, R -- Walenz, B -- Yooseph, S -- Allen, D -- Basu, A -- Baxendale, J -- Blick, L -- Caminha, M -- Carnes-Stine, J -- Caulk, P -- Chiang, Y H -- Coyne, M -- Dahlke, C -- Mays, A -- Dombroski, M -- Donnelly, M -- Ely, D -- Esparham, S -- Fosler, C -- Gire, H -- Glanowski, S -- Glasser, K -- Glodek, A -- Gorokhov, M -- Graham, K -- Gropman, B -- Harris, M -- Heil, J -- Henderson, S -- Hoover, J -- Jennings, D -- Jordan, C -- Jordan, J -- Kasha, J -- Kagan, L -- Kraft, C -- Levitsky, A -- Lewis, M -- Liu, X -- Lopez, J -- Ma, D -- Majoros, W -- McDaniel, J -- Murphy, S -- Newman, M -- Nguyen, T -- Nguyen, N -- Nodell, M -- Pan, S -- Peck, J -- Peterson, M -- Rowe, W -- Sanders, R -- Scott, J -- Simpson, M -- Smith, T -- Sprague, A -- Stockwell, T -- Turner, R -- Venter, E -- Wang, M -- Wen, M -- Wu, D -- Wu, M -- Xia, A -- Zandieh, A -- Zhu, X -- New York, N.Y. -- Science. 2001 Feb 16;291(5507):1304-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA. humangenome@celera.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11181995" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Chromosome Banding ; Chromosome Mapping ; Chromosomes, Artificial, Bacterial ; Computational Biology ; Consensus Sequence ; CpG Islands ; DNA, Intergenic ; Databases, Factual ; Evolution, Molecular ; Exons ; Female ; Gene Duplication ; Genes ; Genetic Variation ; *Genome, Human ; *Human Genome Project ; Humans ; Introns ; Male ; Phenotype ; Physical Chromosome Mapping ; Polymorphism, Single Nucleotide ; Proteins/genetics/physiology ; Pseudogenes ; Repetitive Sequences, Nucleic Acid ; Retroelements ; *Sequence Analysis, DNA/methods ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-10-05
    Description: Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holt, Robert A -- Subramanian, G Mani -- Halpern, Aaron -- Sutton, Granger G -- Charlab, Rosane -- Nusskern, Deborah R -- Wincker, Patrick -- Clark, Andrew G -- Ribeiro, Jose M C -- Wides, Ron -- Salzberg, Steven L -- Loftus, Brendan -- Yandell, Mark -- Majoros, William H -- Rusch, Douglas B -- Lai, Zhongwu -- Kraft, Cheryl L -- Abril, Josep F -- Anthouard, Veronique -- Arensburger, Peter -- Atkinson, Peter W -- Baden, Holly -- de Berardinis, Veronique -- Baldwin, Danita -- Benes, Vladimir -- Biedler, Jim -- Blass, Claudia -- Bolanos, Randall -- Boscus, Didier -- Barnstead, Mary -- Cai, Shuang -- Center, Angela -- Chaturverdi, Kabir -- Christophides, George K -- Chrystal, Mathew A -- Clamp, Michele -- Cravchik, Anibal -- Curwen, Val -- Dana, Ali -- Delcher, Art -- Dew, Ian -- Evans, Cheryl A -- Flanigan, Michael -- Grundschober-Freimoser, Anne -- Friedli, Lisa -- Gu, Zhiping -- Guan, Ping -- Guigo, Roderic -- Hillenmeyer, Maureen E -- Hladun, Susanne L -- Hogan, James R -- Hong, Young S -- Hoover, Jeffrey -- Jaillon, Olivier -- Ke, Zhaoxi -- Kodira, Chinnappa -- Kokoza, Elena -- Koutsos, Anastasios -- Letunic, Ivica -- Levitsky, Alex -- Liang, Yong -- Lin, Jhy-Jhu -- Lobo, Neil F -- Lopez, John R -- Malek, Joel A -- McIntosh, Tina C -- Meister, Stephan -- Miller, Jason -- Mobarry, Clark -- Mongin, Emmanuel -- Murphy, Sean D -- O'Brochta, David A -- Pfannkoch, Cynthia -- Qi, Rong -- Regier, Megan A -- Remington, Karin -- Shao, Hongguang -- Sharakhova, Maria V -- Sitter, Cynthia D -- Shetty, Jyoti -- Smith, Thomas J -- Strong, Renee -- Sun, Jingtao -- Thomasova, Dana -- Ton, Lucas Q -- Topalis, Pantelis -- Tu, Zhijian -- Unger, Maria F -- Walenz, Brian -- Wang, Aihui -- Wang, Jian -- Wang, Mei -- Wang, Xuelan -- Woodford, Kerry J -- Wortman, Jennifer R -- Wu, Martin -- Yao, Alison -- Zdobnov, Evgeny M -- Zhang, Hongyu -- Zhao, Qi -- Zhao, Shaying -- Zhu, Shiaoping C -- Zhimulev, Igor -- Coluzzi, Mario -- della Torre, Alessandra -- Roth, Charles W -- Louis, Christos -- Kalush, Francis -- Mural, Richard J -- Myers, Eugene W -- Adams, Mark D -- Smith, Hamilton O -- Broder, Samuel -- Gardner, Malcolm J -- Fraser, Claire M -- Birney, Ewan -- Bork, Peer -- Brey, Paul T -- Venter, J Craig -- Weissenbach, Jean -- Kafatos, Fotis C -- Collins, Frank H -- Hoffman, Stephen L -- R01AI44273/AI/NIAID NIH HHS/ -- U01AI48846/AI/NIAID NIH HHS/ -- U01AI50687/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2002 Oct 4;298(5591):129-49.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA. robert.holt@celera.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12364791" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/classification/*genetics/parasitology/physiology ; Biological Evolution ; Blood ; Chromosome Inversion ; Chromosomes, Artificial, Bacterial ; Computational Biology ; DNA Transposable Elements ; Digestion ; Drosophila melanogaster/genetics ; Enzymes/chemistry/genetics/metabolism ; Expressed Sequence Tags ; Feeding Behavior ; Gene Expression Regulation ; *Genes, Insect ; Genetic Variation ; *Genome ; Haplotypes ; Humans ; Insect Proteins/chemistry/genetics/physiology ; Insect Vectors/genetics/parasitology/physiology ; Malaria, Falciparum/transmission ; Molecular Sequence Data ; Mosquito Control ; Physical Chromosome Mapping ; Plasmodium falciparum/growth & development ; Polymorphism, Single Nucleotide ; Proteome ; *Sequence Analysis, DNA ; Species Specificity ; Transcription Factors/chemistry/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: With the first injection of neutral beams into the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40, 557 (2000)], a broad spectrum of fluctuations consisting of nearly equally spaced peaks in the frequency range from about 0.2 to 1.2 times the ion cyclotron frequency was observed. The frequencies scale with toroidal field and plasma density consistently with Alfvén waves. From these and other observations, the modes have been identified as compressional Alfvén eigenmodes (CAE). It has also recently been found that the ratio of the measured ion and electron temperatures in NSTX during neutral beam heating is anomalously high [Bell, Bull. Am. Phys. Soc. 46, 206 (2001)]. To explain the anomaly in the ratio of ion to electron temperature, it has been suggested that the CAE, driven by the beam ions, stochastically heat the thermal ions [Gates et al., Phys. Rev. Lett. 87, 205003 (2001)]. In this paper it is shown through studies of the power balance that stochastic heating of the thermal ions by the observed CAE alone is not solely responsible for the anomaly in the ion to electron temperature ratio. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The creation of a plasma atmosphere in laser-target interactions increases the distance between the regions of laser absorption and hydrodynamic instability (ablation front), thus allowing thermal smoothing and a reduction of laser-imprinted modulations that reach the unstable ablation region. The total laser imprinting is reduced with pulse shapes that produce a plasma atmosphere more rapidly and by the implementation of temporal beam smoothing. These effects are measured and found to be consistent with models for the hydrodynamics and optical smoothing by spectral dispersion (SSD). Imprinting is reduced as the laser bandwidth is increased from 0.2 to 1.0 THz. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Reduction of core-resonant m=1 magnetic fluctuations and improved confinement in the Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field pinch have been routinely achieved through control of the surface poloidal electric field, but it is now known that the achieved confinement has been limited in part by edge-resonant m=0 magnetic fluctuations. Now, through refined poloidal electric field control, plus control of the toroidal electric field, it is possible to reduce simultaneously the m=0 and m=1 fluctuations. This has allowed confinement of high-energy runaway electrons, possibly indicative of flux-surface restoration in the usually stochastic plasma core. The electron temperature profile steepens in the outer region of the plasma, and the central electron temperature increases substantially, reaching nearly 1.3 keV at high toroidal plasma current (500 kA). At low current (200 kA), the total beta reaches 15% with an estimated energy confinement time of 10 ms, a tenfold increase over the standard value which for the first time substantially exceeds the constant-beta confinement scaling that has characterized most reversed-field-pinch plasmas. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The use of moderate energy electron beams (e-beams) to generate plasma can provide greater control and larger area than existing techniques for processing applications. Kilovolt energy electrons have the ability to efficiently ionize low pressure neutral gas nearly independent of composition. This results in a low-temperature, high-density plasma of nearly controllable composition generated in the beam channel. By confining the electron beam magnetically the plasma generation region can be designated independent of surrounding structures. Particle fluxes to surfaces can then be controlled by the beam and gas parameters, system geometry, and the externally applied rf bias. The Large Area Plasma Processing System (LAPPS) utilizes a 1–5 kV, 2–10 mA/cm2 sheet beam of electrons to generate a 1011–1012 cm−3 density, 1 eV electron temperature plasma. Plasma sheets of up to 60×60 cm2 area have been generated in a variety of molecular and atomic gases using both pulsed and cw e-beam sources. The theoretical basis for the plasma production and decay is presented along with experiments measuring the plasma density, temperature, and potential. Particle fluxes to nearby surfaces are measured along with the effects of radio frequency biasing. The LAPPS source is found to generate large-area plasmas suitable for materials processing. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experiments designed for generating internal transport barriers in the plasmas of the Joint European Torus [JET, P. H. Rebut et al., Proceedings of the 10th International Conference, Plasma Physics and Controlled Nuclear Fusion, London (International Atomic Energy Agency, Vienna, 1985), Vol. I, p. 11] reveal cascades of Alfvén perturbations with predominantly upward frequency sweeping. These experiments are characterized by a hollow plasma current profile, created by lower hybrid heating and current drive before the main heating power phase. The cascades are driven by ions accelerated with ion cyclotron resonance heating (ICRH). Each cascade consists of many modes with different toroidal mode numbers and different frequencies. The toroidal mode numbers vary from n=1 to n=6. The frequency starts from 20 to 90 kHz and increases up to the frequency range of toroidal Alfvén eigenmodes. In the framework of ideal magnetohydrodynamics (MHD) model, a close correlation is found between the time evolution of the Alfvén cascades and the evolution of the Alfvén continuum frequency at the point of zero magnetic shear. This correlation facilitates the study of the time evolution of both the Alfvén continuum and the safety factor, q(r), at the point of zero magnetic shear and makes it possible to use Alfvén spectroscopy for studying q(r). Modeling shows that the Alfvén cascade occurs when the Alfvén continuum frequency has a maximum at the zero shear point. Interpretation of the Alfvén cascades is given in terms of a novel-type of energetic particle mode localized at the point where q(r) has a minimum. This interpretation explains the key experimental observations: simultaneous generation of many modes, preferred direction of frequency sweeping, and the absence of strong continuum damping. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Initial results from direct-drive spherical cryogenic target implosions on the 60-beam OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)] are presented. These experiments are part of the scientific base leading to direct-drive ignition implosions planned for the National Ignition Facility (NIF) [W. J. Hogan, E. I. Moses, B. E. Warner et al., Nucl. Fusion 41, 567 (2001)]. Polymer shells (1-mm diam with walls 〈3 μm) are filled with up to 1000 atm of D2 to provide 100-μm-thick ice layers. The ice layers are smoothed by IR heating with 3.16-μm laser light and are characterized using shadowgraphy. The targets are imploded by a 1-ns square pulse with up to ∼24 kJ of 351-nm laser light at a beam-to-beam rms energy balance of 〈3% and full-beam smoothing. Results shown include neutron yield, secondary neutron and proton yields, the time of peak neutron emission, and both time-integrated and time-resolved x-ray images of the imploding core. The experimental values are compared with 1-D numerical simulations. The target with an ice-layer nonuniformity of σrms=9 μm showed 30% of the 1-D predicted neutron yield. These initial results are encouraging for future cryogenic implosions on OMEGA and the NIF. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The 100 ns, 20 MA pinch-driver Z is surrounded by an extensive set of diagnostics. There are nine radial lines of sight set at 12° above horizontal and each of these may be equipped with up to five diagnostic ports. Instruments routinely fielded viewing the pinch from the side with these ports include x-ray diode arrays, photoconducting detector arrays, bolometers, transmission grating spectrometers, time-resolved x-ray pinhole cameras, x-ray crystal spectrometers, calorimeters, silicon photodiodes, and neutron detectors. A diagnostic package fielded on axis for viewing internal pinch radiation consists of nine lines of sight. This package accommodates virtually the same diagnostics as the radial ports. Other diagnostics not fielded on the axial or radial ports include current B-dot monitors, filtered x-ray scintillators coupled by fiber optics to streak cameras, streaked visible spectroscopy, velocity interferometric system for any reflector, bremsstrahlung cameras, and active shock breakout measurement of hohlraum temperature. The data acquisition system is capable of recording up to 500 channels and the data from each shot is available on the Internet. A major new diagnostic presently under construction is the BEAMLET backlighter. We will briefly describe each of these diagnostics and present some of the highest-quality data from them. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...