ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (6)
  • 2000-2004  (2)
  • 1995-1999  (4)
  • 2004  (2)
  • 1998  (4)
  • 1
    Publication Date: 1998-06-20
    Description: In humans, interferon gamma (IFN-gamma) receptor deficiency leads to a predisposition to mycobacterial infections and impairs the formation of mature granulomas. Interleukin-12 (IL-12) receptor deficiency was found in otherwise healthy individuals with mycobacterial infections. Mature granulomas were seen, surrounded by T cells and centered with epithelioid and multinucleated giant cells, yet reduced IFN-gamma concentrations were found to be secreted by activated natural killer and T cells. Thus, IL-12-dependent IFN-gamma secretion in humans seems essential in the control of mycobacterial infections, despite the formation of mature granulomas due to IL-12-independent IFN-gamma secretion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altare, F -- Durandy, A -- Lammas, D -- Emile, J F -- Lamhamedi, S -- Le Deist, F -- Drysdale, P -- Jouanguy, E -- Doffinger, R -- Bernaudin, F -- Jeppsson, O -- Gollob, J A -- Meinl, E -- Segal, A W -- Fischer, A -- Kumararatne, D -- Casanova, J L -- New York, N.Y. -- Science. 1998 May 29;280(5368):1432-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM U429, Hopital Necker-Enfants Malades, Paris 75015, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9603732" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytotoxicity, Immunologic ; Female ; Granuloma/immunology ; Humans ; Hypersensitivity, Delayed ; Interferon-gamma/biosynthesis/immunology/secretion ; Interleukin-12/*immunology ; Killer Cells, Natural/immunology ; Lymphocyte Activation ; Male ; Mice ; Mice, Knockout ; Mutation ; Mycobacterium avium-intracellulare Infection/*immunology ; *Mycobacterium bovis ; Pedigree ; Receptors, Interferon/genetics/immunology ; Receptors, Interleukin/deficiency/*genetics ; Receptors, Interleukin-12 ; T-Lymphocytes/immunology ; Tuberculosis/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-01-07
    Description: Dorsoventral patterning of vertebrate and Drosophila embryos requires bone morphogenetic proteins (BMPs) and antagonists of BMP activity. The Drosophila gene tolloid encodes a metalloprotease similar to BMP-1 that interacts genetically with decapentaplegic, the Drosophila homolog of vertebrate BMP-2/4. Zebrafish embryos overexpressing a zebrafish homolog of tolloid were shown to resemble loss-of-function mutations in chordino, the zebrafish homolog of the Xenopus BMP-4 antagonist Chordin. Furthermore, Chordin was degraded by COS cells expressing Tolloid. These data suggest that Tolloid antagonizes Chordin activity by proteolytically cleaving Chordin. A conserved function for zebrafish and Drosophila Tolloid during embryogenesis is proposed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blader, P -- Rastegar, S -- Fischer, N -- Strahle, U -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1937-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, C.U. de Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9395394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Body Patterning ; Bone Morphogenetic Protein 4 ; Bone Morphogenetic Protein Receptors ; Bone Morphogenetic Proteins/antagonists & inhibitors/*metabolism ; COS Cells ; Cell Lineage ; *Drosophila Proteins ; Embryo, Nonmammalian/metabolism ; Gene Expression Regulation, Developmental ; Glycoproteins/*metabolism ; Insect Proteins/genetics/*metabolism ; *Intercellular Signaling Peptides and Proteins ; RNA, Messenger/genetics/metabolism ; Receptors, Cell Surface/metabolism ; *Receptors, Growth Factor ; Signal Transduction ; Tolloid-Like Metalloproteinases ; Transfection ; Xenopus Proteins ; Zebrafish/*embryology/genetics/metabolism ; Zebrafish Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-06-12
    Description: During speech acquisition, children form quick and rough hypotheses about the meaning of a new word after only a single exposure-a process dubbed "fast mapping." Here we provide evidence that a border collie, Rico, is able to fast map. Rico knew the labels of over 200 different items. He inferred the names of novel items by exclusion learning and correctly retrieved those items right away as well as 4 weeks after the initial exposure. Fast mapping thus appears to be mediated by general learning and memory mechanisms also found in other animals and not by a language acquisition device that is special to humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaminski, Juliane -- Call, Josep -- Fischer, Julia -- New York, N.Y. -- Science. 2004 Jun 11;304(5677):1682-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental and Comparative Psychology, Max-Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15192233" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Dogs ; *Learning ; Male ; *Memory ; Random Allocation ; *Vocabulary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-03-27
    Description: In the nervous system of vertebrates, myelination is essential for rapid and accurate impulse conduction. Myelin thickness depends on axon fiber size. We use mutant and transgenic mouse lines to show that axonal Neuregulin-1 (Nrg1) signals information about axon size to Schwann cells. Reduced Nrg1 expression causes hypomyelination and reduced nerve conduction velocity. Neuronal overexpression of Nrg1 induces hypermyelination and demonstrates that Nrg1 type III is the responsible isoform. We suggest a model by which myelin-forming Schwann cells integrate axonal Nrg1 signals as a biochemical measure of axon size.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Michailov, Galin V -- Sereda, Michael W -- Brinkmann, Bastian G -- Fischer, Tobias M -- Haug, Bernhard -- Birchmeier, Carmen -- Role, Lorna -- Lai, Cary -- Schwab, Markus H -- Nave, Klaus-Armin -- New York, N.Y. -- Science. 2004 Apr 30;304(5671):700-3. Epub 2004 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15044753" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology/*ultrastructure ; Ganglia, Spinal/chemistry ; Gene Targeting ; Genes, erbB ; Genes, erbB-2 ; Heterozygote ; Mice ; Mice, Knockout ; Mice, Transgenic ; Models, Neurological ; Myelin Sheath/*physiology/*ultrastructure ; Neural Conduction ; Neuregulin-1/genetics/*physiology ; Protein Isoforms/physiology ; Receptor, Epidermal Growth Factor/analysis/physiology ; Receptor, ErbB-2/analysis/physiology ; Receptor, ErbB-3/analysis/physiology ; Schwann Cells/physiology ; Sciatic Nerve/chemistry ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-05-09
    Description: Affinity-driven selection of B lymphocytes within germinal centers is critical for the development of high-affinity memory cells and host protection. To investigate the role of the CD21/CD35 coreceptor in B cell competition for follicular retention and survival within the germinal center, either Cr2+ or Cr2null lysozyme-specific transgenic B cells were adoptively transferred into normal mice immunized with duck (DEL) or turkey (TEL) lysozyme, which bind with different affinities. In mice injected with high-affinity turkey lysozyme, Cr2null B cells responded by follicular retention; however, they could not survive within germinal centers. This suggests that CD21 provides a signal independent of antigen that is required for survival of B cells in the germinal center.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischer, M B -- Goerg, S -- Shen, L -- Prodeus, A P -- Goodnow, C C -- Kelsoe, G -- Carroll, M C -- New York, N.Y. -- Science. 1998 Apr 24;280(5363):582-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9554848" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Amino Acid Sequence ; Animals ; B-Lymphocytes/cytology/*immunology ; Cell Division ; Cell Survival ; Female ; Gene Expression ; Germinal Center/cytology/*immunology ; Immunization ; Lymphocyte Activation ; Male ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Muramidase/immunology ; Receptors, Antigen, B-Cell/immunology ; Receptors, Complement 3b/genetics/*immunology ; Receptors, Complement 3d/genetics/*immunology ; Spleen/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-05-02
    Description: Mammals have evolved complex developmental pathways to generate a large repertoire of B and T lymphocytes capable of mounting effective immune responses. Analysis of natural and engineered immunodeficiencies constitutes a powerful approach to delineating these pathways and identifying the molecular sensors that couple the survival of developing lymphocytes to the achievement of successful gene rearrangements at the loci coding for B and T cell antigen receptors. Besides identifying cytokines, growth factors, and transcription factors involved in lymphocyte development, genetic analysis also makes it possible to organize most of these protagonists into gene networks that control critical events in the life of developing lymphocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischer, A -- Malissen, B -- New York, N.Y. -- Science. 1998 Apr 10;280(5361):237-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite INSERM U.429, Hopital Necker-Enfants Malades 149, Rue de Sevres, 75743, Paris Cedex 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9535646" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/cytology/*immunology ; Cytokines/physiology ; Gene Rearrangement, T-Lymphocyte ; Gene Transfer Techniques ; Humans ; Immunologic Deficiency Syndromes/genetics/*immunology ; Mice ; Mutagenesis ; *Mutation ; Receptors, Antigen, B-Cell/genetics/immunology/metabolism ; Receptors, Antigen, T-Cell, alpha-beta/genetics/immunology/metabolism ; Signal Transduction ; T-Lymphocytes/cytology/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...