ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (87)
  • Rats  (87)
  • American Association for the Advancement of Science (AAAS)  (87)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • Oxford University Press
  • Wiley
  • 1995-1999  (26)
  • 1980-1984  (61)
  • 1960-1964
  • 1999  (26)
  • 1984  (29)
  • 1980  (32)
  • 1960
  • Computer Science  (87)
Collection
  • Articles  (87)
Publisher
  • American Association for the Advancement of Science (AAAS)  (87)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • Oxford University Press
  • Wiley
Years
  • 1995-1999  (26)
  • 1980-1984  (61)
  • 1960-1964
Year
Topic
  • 1
    Publication Date: 1999-06-12
    Description: To monitor changes in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor distribution in living neurons, the AMPA receptor subunit GluR1 was tagged with green fluorescent protein (GFP). This protein (GluR1-GFP) was functional and was transiently expressed in hippocampal CA1 neurons. In dendrites visualized with two-photon laser scanning microscopy or electron microscopy, most of the GluR1-GFP was intracellular, mimicking endogenous GluR1 distribution. Tetanic synaptic stimulation induced a rapid delivery of tagged receptors into dendritic spines as well as clusters in dendrites. These postsynaptic trafficking events required synaptic N-methyl-D-aspartate (NMDA) receptor activation and may contribute to the enhanced AMPA receptor-mediatedtransmission observed during long-term potentiation and activity-dependent synaptic maturation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, S H -- Hayashi, Y -- Petralia, R S -- Zaman, S H -- Wenthold, R J -- Svoboda, K -- Malinow, R -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1811-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364548" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Dendrites/*metabolism/ultrastructure ; Electric Stimulation ; Hippocampus/cytology/physiology ; Humans ; Long-Term Potentiation ; *Neuronal Plasticity ; Neurons/*physiology ; Organ Culture Techniques ; Rats ; Receptor Aggregation ; Receptors, AMPA/*metabolism ; Receptors, N-Methyl-D-Aspartate/*physiology ; Recombinant Fusion Proteins/metabolism ; Synapses/metabolism/*physiology ; Synaptic Transmission ; Tetany
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-05-15
    Description: Bone marrow stem cells develop into hematopoietic and mesenchymal lineages but have not been known to participate in production of hepatocytes, biliary cells, or oval cells during liver regeneration. Cross-sex or cross-strain bone marrow and whole liver transplantation were used to trace the origin of the repopulating liver cells. Transplanted rats were treated with 2-acetylaminofluorene, to block hepatocyte proliferation, and then hepatic injury, to induce oval cell proliferation. Markers for Y chromosome, dipeptidyl peptidase IV enzyme, and L21-6 antigen were used to identify liver cells of bone marrow origin. From these cells, a proportion of the regenerated hepatic cells were shown to be donor-derived. Thus, a stem cell associated with the bone marrow has epithelial cell lineage capability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petersen, B E -- Bowen, W C -- Patrene, K D -- Mars, W M -- Sullivan, A K -- Murase, N -- Boggs, S S -- Greenberger, J S -- Goff, J P -- New York, N.Y. -- Science. 1999 May 14;284(5417):1168-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA. bryon+@pitt.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10325227" target="_blank"〉PubMed〈/a〉
    Keywords: 2-Acetylaminofluorene/pharmacology ; Animals ; Bone Marrow Cells/*cytology ; Bone Marrow Transplantation ; Carbon Tetrachloride/pharmacology ; Cell Differentiation ; Cell Division ; DNA-Binding Proteins/genetics ; Dipeptidyl Peptidase 4/metabolism ; Epithelial Cells/cytology ; Female ; Hematopoietic Stem Cells/cytology ; In Situ Hybridization ; Liver/*cytology/drug effects/physiology ; *Liver Regeneration ; Liver Transplantation ; Male ; *Nuclear Proteins ; Polymerase Chain Reaction ; Rats ; Rats, Inbred F344 ; Rats, Inbred Lew ; Sex-Determining Region Y Protein ; Stem Cells/*cytology ; *Transcription Factors ; Y Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1980-02-15
    Description: In rats, multiple daily amphetamine injections (2.5 milligrams per kilogram of body weight, injected subcutaneously every 4 hours for 5 days) resulted in a progressive augmentation in response, characterized by a more rapid onset and an increased magnitude of stereotypy. By contrast, offset times of both the stereotypy and the poststereotypy hyperactivity periods were markedly shortened. When the animals were retested with the same dose of amphetamine 8 days after the long-term treatment was discontinued, the time of offset of the stereotypy and hyperactivity phases had recovered to values found with short-term amphetamine treatment, whereas the more rapid onset of stereotypy persisted. Brain monoamine and amphetamine concentrations and tyrosine hydroxylase activity were determined in comparably treated rats at times corresponding to the behavioral observations. The behavioral data indicate that enhanced responsiveness to amphetamine following its repeated administration may contribute to the development of amphetamine psychosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Segal, D S -- Weinberger, S B -- Cahill, J -- McCunney, S J -- New York, N.Y. -- Science. 1980 Feb 15;207(4433):905-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7188815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior/*drug effects ; Behavior, Animal/*drug effects ; Brain/metabolism ; Brain Chemistry/drug effects ; Dextroamphetamine/administration & dosage/*pharmacology ; Dopamine/metabolism ; Dose-Response Relationship, Drug ; Humans ; Male ; Motor Activity/drug effects ; Norepinephrine/metabolism ; Rats ; Serotonin/metabolism ; Stereotyped Behavior/*drug effects ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1984-10-26
    Description: Intravenous infusion of morphine sulfate in rats for 24 hours produced marked opioid dependence, manifested by a series of well-documented signs appearing after injection of the opiate antagonist naloxone. Treatment of rats with naloxonazine significantly reduced the analgesia associated with the morphine infusions for more than 24 hours. Furthermore, 14 of 16 withdrawal signs observed in naloxonazine-treated rats were virtually identical to those in rats that received morphine alone. These results raise the possibility that different receptor mechanisms mediate morphine analgesia and many of the withdrawal signs associated with morphine dependence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ling, G S -- MacLeod, J M -- Lee, S -- Lockhart, S H -- Pasternak, G W -- DA 002615/DA/NIDA NIH HHS/ -- NS 00415/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1984 Oct 26;226(4673):462-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6541807" target="_blank"〉PubMed〈/a〉
    Keywords: *Analgesia ; Animals ; Humans ; Male ; Morphine/*pharmacology ; Naloxone/*analogs & derivatives/pharmacology ; Rats ; Rats, Inbred Strains ; Substance Withdrawal Syndrome ; *Substance-Related Disorders
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1980-02-22
    Description: Rates of tyrosine and lysine transport and incorporation into protein were measured in control and undernourished weanling rats. Undernutrition was induced by feeding lactating dams a low protein diet (12 percent casein) from birth to day 21. At weaning, body and brain weights of undernourished rats were 50 percent and 88 percent, respectively, of control values. Lysine and tyrosine transport rates into skeletal muscle were reduced by over 75 percent, more than twice the reduction seen in brain. Rates of amino acid incorporation into muscle protein were reduced by approximately 50 percent; the change in rate of incorporation into brain protein was not statistically significant. These data indicate that, in spite of marked retardation of amino acid transport into brain, the brain seems fully capable of maintaining normal rates of protein synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freedman, L S -- Samuels, S -- Fish, I -- Schwartz, S A -- Lange, B -- Katz, M -- Morgano, L -- New York, N.Y. -- Science. 1980 Feb 22;207(4433):902-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6766565" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*metabolism ; Animals ; Animals, Newborn/metabolism ; Biological Transport ; Body Weight ; Brain/growth & development/*metabolism ; Disease Models, Animal ; Female ; Lactation ; Male ; Muscles/*metabolism ; Pregnancy ; Protein-Energy Malnutrition/*metabolism ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-07-03
    Description: Regulation of N-methyl-D-aspartate (NMDA) receptor activity by kinases and phosphatases contributes to the modulation of synaptic transmission. Targeting of these enzymes near the substrate is proposed to enhance phosphorylation-dependent modulation. Yotiao, an NMDA receptor-associated protein, bound the type I protein phosphatase (PP1) and the adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (PKA) holoenzyme. Anchored PP1 was active, limiting channel activity, whereas PKA activation overcame constitutive PP1 activity and conferred rapid enhancement of NMDA receptor currents. Hence, yotiao is a scaffold protein that physically attaches PP1 and PKA to NMDA receptors to regulate channel activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Westphal, R S -- Tavalin, S J -- Lin, J W -- Alto, N M -- Fraser, I D -- Langeberg, L K -- Sheng, M -- Scott, J D -- F32 NS010202/NS/NINDS NIH HHS/ -- GM 48231/GM/NIGMS NIH HHS/ -- NS10202/NS/NINDS NIH HHS/ -- NS10543/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):93-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Vollum Institute, Oregon Health Sciences University, 3181 S.W. Sam Jackson Road, Portland, OR 97201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390370" target="_blank"〉PubMed〈/a〉
    Keywords: A Kinase Anchor Proteins ; *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Binding Sites ; Carrier Proteins/*metabolism ; Cell Line ; Cyclic AMP/analogs & derivatives/pharmacology ; Cyclic AMP-Dependent Protein Kinases/*metabolism ; Cytoskeletal Proteins/*metabolism ; Enzyme Inhibitors/pharmacology ; Holoenzymes/metabolism ; Humans ; Molecular Sequence Data ; Okadaic Acid/pharmacology ; Patch-Clamp Techniques ; Peptide Fragments/pharmacology ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylation ; Rats ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Thionucleotides/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-04-24
    Description: The von Hippel-Lindau (VHL) tumor suppressor gene is mutated in most human kidney cancers. The VHL protein is part of a complex that includes Elongin B, Elongin C, and Cullin-2, proteins associated with transcriptional elongation and ubiquitination. Here it is shown that the endogenous VHL complex in rat liver also includes Rbx1, an evolutionarily conserved protein that contains a RING-H2 fingerlike motif and that interacts with Cullins. The yeast homolog of Rbx1 is a subunit and potent activator of the Cdc53-containing SCFCdc4 ubiquitin ligase required for ubiquitination of the cyclin-dependent kinase inhibitor Sic1 and for the G1 to S cell cycle transition. These findings provide a further link between VHL and the cellular ubiquitination machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kamura, T -- Koepp, D M -- Conrad, M N -- Skowyra, D -- Moreland, R J -- Iliopoulos, O -- Lane, W S -- Kaelin, W G Jr -- Elledge, S J -- Conaway, R C -- Harper, J W -- Conaway, J W -- AG-11085/AG/NIA NIH HHS/ -- GM41628/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):657-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10213691" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Cycle ; Cell Cycle Proteins/metabolism ; Cell Line ; *Cullin Proteins ; Cyclin-Dependent Kinase Inhibitor Proteins ; *F-Box Proteins ; Fungal Proteins/metabolism ; *Ligases ; Liver ; Male ; Molecular Sequence Data ; Peptide Synthases/*metabolism ; Proteins/*metabolism ; Rats ; Rats, Sprague-Dawley ; Recombinant Fusion Proteins/metabolism ; S-Phase Kinase-Associated Proteins ; SKP Cullin F-Box Protein Ligases ; Saccharomyces cerevisiae/metabolism ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; Transcription Factors/metabolism ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism ; Von Hippel-Lindau Tumor Suppressor Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1999-05-15
    Description: RAFT1 (rapamycin and FKBP12 target 1; also called FRAP or mTOR) is a member of the ATM (ataxia telangiectasia mutated)-related family of proteins and functions as the in vivo mediator of the effects of the immunosuppressant rapamycin and as an important regulator of messenger RNA translation. In mammalian cells RAFT1 interacted with gephyrin, a widely expressed protein necessary for the clustering of glycine receptors at the cell membrane of neurons. RAFT1 mutants that could not associate with gephyrin failed to signal to downstream molecules, including the p70 ribosomal S6 kinase and the eIF-4E binding protein, 4E-BP1. The interaction with gephyrin ascribes a function to the large amino-terminal region of an ATM-related protein and reveals a role in signal transduction for the clustering protein gephyrin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sabatini, D M -- Barrow, R K -- Blackshaw, S -- Burnett, P E -- Lai, M M -- Field, M E -- Bahr, B A -- Kirsch, J -- Betz, H -- Snyder, S H -- DA-00074/DA/NIDA NIH HHS/ -- DA-00266/DA/NIDA NIH HHS/ -- GM-07309/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 May 14;284(5417):1161-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Johns Hopkins University School of Medicine, Department of Neuroscience, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10325225" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Gene Expression ; HeLa Cells ; Humans ; Membrane Proteins/*metabolism ; Molecular Sequence Data ; Mutation ; Phosphoproteins/*metabolism ; Phosphorylation ; *Phosphotransferases (Alcohol Group Acceptor) ; Rats ; Receptors, Glycine/metabolism ; Repressor Proteins/metabolism ; Ribosomal Protein S6 Kinases/*metabolism ; *Signal Transduction ; Sirolimus/*pharmacology ; TOR Serine-Threonine Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1980-10-03
    Description: Antidepressants compete at several neurotransmitter receptor binding site, but drug affinities do not correlate with clinical efficacy. Long-term, but not short-term, antidepressant treatment decreases the numbers of both serotonin and beta-adrenergic receptors. The decrease in the number of receptor sites is most marked for [3H]spiroperidol-labeled serotonin receptors and is characteristic for antidepressants of several classes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peroutka, S J -- Snyder, S H -- 5T32GM0309/GM/NIGMS NIH HHS/ -- DA00266/DA/NIDA NIH HHS/ -- MH18501/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1980 Oct 3;210(4465):88-90.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6251550" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antidepressive Agents/administration & dosage/metabolism/*pharmacology ; Frontal Lobe/drug effects ; Male ; Rats ; Receptors, Adrenergic, alpha/metabolism ; Receptors, Adrenergic, beta/drug effects/metabolism ; Receptors, Dopamine/metabolism ; Receptors, Histamine H1/metabolism ; Receptors, Muscarinic/metabolism ; Receptors, Serotonin/*drug effects/metabolism ; Spiperone/metabolism ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1984-01-06
    Description: Mammalian cardiac atria have several biologically active peptides that exert profound effects on sodium excretion, urine volume, and smooth muscle tone. In the present study two such peptides of low molecular weight were purified and separated from each other on the basis of differences in charge, hydrophobicity, and biological profile. The first peptide, designated atriopeptin I, exhibits natriuretic and diuretic activity and selectivity relaxes intestinal smooth muscle but not vascular smooth muscle strips. The second peptide, atriopeptin II, is a potent natriuretic and diuretic that relaxes both intestinal and vascular strips. Sequence analysis of atriopeptin I indicates that it is composed of 21 amino acids, of which serine and glycine residues predominate. The amino terminal sequence of atriopeptin II up to residue 21 is the same as that of atriopeptin I, with the addition of the Phe-Arg extension at the carboxyl terminus. Both peptides appear to be derived from a common high molecular weight precursor (designated atriopeptigen); their biological selectivity and potency may be determined by the site of carboxyl terminal cleavage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Currie, M G -- Geller, D M -- Cole, B R -- Siegel, N R -- Fok, K F -- Adams, S P -- Eubanks, S R -- Galluppi, G R -- Needleman, P -- New York, N.Y. -- Science. 1984 Jan 6;223(4631):67-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6419347" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arginine/analysis ; Chromatography, High Pressure Liquid ; Chromatography, Ion Exchange ; Diuresis/drug effects ; Glycine/analysis ; Heart Atria/*analysis ; Muscle Contraction/drug effects ; Muscle, Smooth/drug effects ; Muscle, Smooth, Vascular/drug effects ; Natriuresis/drug effects ; Peptides/analysis/*isolation & purification/pharmacology ; Phenylalanine/analysis ; Rats ; Serine/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...