ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inorganic Chemistry  (83,671)
  • Cell & Developmental Biology  (25,032)
  • AERODYNAMICS  (12,790)
  • 42.73
Collection
Keywords
Language
Years
  • 101
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 281-285 
    ISSN: 0730-2312
    Keywords: QM ; large P-antigen ; 60S ribosomal subunit ; colocalization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: QM is a human cDNA originally isolated as a transcript elevated in a nontumorigenic Wilms' tumor microcell hybrid, relative to the tumorigenic parental cell line. The QM gene encodes a 24 kDa basic protein that peripherally associates with the ribosomes. Recently, the gene for this protein has also been shown in Saccharomyces cerevisiaeto encode an essential 60S ribosomal subunit protein that is required for the joining of the 40S and 60S subunits. Since the association of QM with ribosomes can be disrupted with 1M NaCl, which has no effect on the association of core ribosomal proteins, indirect immunofluorescent cell staining was performed to colocalize the QM protein with the human large P-antigen, a core ribosomal protein of the 60S subunit, and to determine whether the assembly of the QM protein onto the 60S ribosomal subunit occurs in the nucleolus or in the cytoplasm. Our results reveal that QM co-localizes with the large P-antigen only to the cytoplasm where the rough endoplasmic reticulum is found and not to the nucleolus where ribosome assembly occurs. This finding suggests that the QM protein is most likely involved in a late step of the 60S subunit assembly and is added to the 60S ribosomal subunit in the cytoplasm and not in the nucleolus. J. Cell. Biochem. 68:281-285, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 110-120 
    ISSN: 0730-2312
    Keywords: cadmium ; zinc ; cell culture ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Following exposure to cadmium or zinc, chickens were sacrificed and the liver, kidney, and bone epiphyseal growth plates harvested. When cytosolic extracts of the growth plate cartilage were fractionated by gel filtration chromatography, a protein with high metal-binding capacity and low ultraviolet (UV) absorbance eluted in the same position as liver metallothionein (MT) and a MT standard. Cd or Zn treatment resulted in a 25-fold or 5-fold induction in growth plate MT, respectively. In liver the greatest level of MT induction was seen with short-term Cd exposures. In contrast, MT levels in the growth plate increased as the duration of Cd exposure increased. Induction of MT in growth plate chondrocyte cell cultures was observed for media Cd concentrations of ≥0.1 μM and Zn concentrations of ≥100 μM. Basal and inducible levels of MT declined through the culture period and were lowest in the terminally differentiated mineralized late stages of the culture. Alkaline phosphatase activity was also lowest in the late-stage cultures, while total cellular protein increased throughout the culture period. Treatment of chondrocytes with Zn prior to Cd exposure resulted in a protective induction of MT. Pre-treatment of chondrocytes with dexamethasone resulted in suppressed synthesis of MT upon Cd exposure and greater Cd toxicity. Both Cd and Zn resulted in significantly increased levels of MT mRNA in chondrocyte cell cultures. Dexamethasone treatment resulted in an approximate 2- to 3-fold increase in MT mRNA. This is contrary to the finding that MT protein levels were decreased by dexamethasone. The findings suggest that an increased rate of MT degradation in dexamethasone-treated and late-stage chondrocyte cultures may be associated with the terminally differentiated phenotype. J. Cell. Biochem. 68:110-120, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 128-137 
    ISSN: 0730-2312
    Keywords: oligodendrocytes ; cell cycle ; differentiation ; cyclin-dependent kinases ; cdk5 ; cdk2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Oligodendrocytes, the myelinating cells of the central nervous system, are terminally differentiated cells that originate through asynchronous waves of proliferation and differentiation of precursors present at birth. Withdrawal from cell cycle and onset of differentiation are tightly linked and depend on an intrinsic program modulated by the action of growth factors. p27 plays a central and obligatory role in the initiation of oligodendrocyte differentiation and cessation of proliferation. In this paper, we have characterized the role of modulation of cdk2 and cdk5 kinase activity during the process of oligodendrocyte precursor differentiation. As rat primary oligodendrocytes differentiate in culture there is a fall in cdk2 activity and a rise in cdk5 activity as well as an increase in the cdk inhibitor, p27 protein. The decline in cdk2 activity is not accompanied by a drop in cdk2 protein level, suggesting that it results from inhibition of cdk2 activation rather than decreased protein expression. Taken together, these data suggest that oligodendrocytes may withdraw from the cell cycle at G1-S transition through inactivation of cdk2 activity, possibly initiated by increasing amount of p27, and that cdk5 may have a role until now unrecognized in the differentiation of oligodendrocytes. J. Cell. Biochem. 68:128-137, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    ISSN: 0730-2312
    Keywords: cell proliferation ; tumor progression ; EGF receptor ; ErbB ; HER1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an activating ligand for the EGF receptor (HER1/ErbB1) and the high-affinity receptor for diphtheria toxin (DT) in its transmembrane form (proHB-EGF). HB-EGF was immunolocalized within human benign and malignant prostatic tissues, using monospecific antibodies directed against the mature protein and against the cytoplasmic domain of proHB-EGF. Prostate carcinoma cells, normal glandular epithelial cells, undifferentiated fibroblasts, and inflammatory cells were not decorated by the anti-HB-EGF antibodies; however, interstitial and vascular smooth muscle cells were highly reactive, indicating that the smooth muscle compartments are the major sites of synthesis and localization of HB-EGF within the prostate. In marked contrast to prostatic epithelium, proHB-EGF was immunolocalized to seminal vesicle epithelium, indicating differential regulation of HB-EGF synthesis within various epithelia of the reproductive tract. HB-EGF was not overexpressed in this series of cancer tissues, in comparison to the benign tissues. In experiments with LNCaP human prostate carcinoma cells, HB-EGF was similar in potency to epidermal growth factor (EGF) in stimulating cell growth. Exogenous HB-EGF and EGF each activated HER1 and HER3 receptor tyrosine kinases and induced tyrosine phosphorylation of cellular proteins to a similar extent. LNCaP cells expressed detectable but low levels of HB-EGF mRNA; however, proHB-EGF was detected at the cell surface indirectly by demonstration of specific sensitivity to DT. HB-EGF is the first HER1 ligand to be identified predominantly as a smooth muscle cell product in the human prostate. Further, the observation that HB-EGF is similar to EGF in mitogenic potency for human prostate carcinoma cells suggests that it may be one of the hypothesized stromal mediators of prostate cancer growth. J. Cell. Biochem. 68:328-338, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    ISSN: 0730-2312
    Keywords: mechanical loading ; gene expression ; osteopontin ; myeloperoxidase ; rats ; differential display ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The skeleton has the ability to alter its mass, geometry, and strength in response to mechanical stress. In order to elucidate the molecular mechanisms underlying this phenomenon, differential display reverse transcriptase-polymerase chain reaction (DDRT-PCR) was used to analyze gene expression in endocortical bone of mature female rats. Female Sprague-Dawley rats, approximately 8 months old, received either a sham or bending load using a four-point loading apparatus on the right tibia. RNA was collected at 1 h and 24 h after load was applied, reverse-transcribed into cDNA, and used in DDRT-PCR. Parallel display of samples from sham and loaded bones on a sequencing gel showed several regulated bands. Further analysis of seven of these bands allowed us to isolate two genes that are regulated in response to a loading stimulus. Nucleotide analysis showed that one of the differentially expressed bands shares 99% sequence identity with rat osteopontin (OPN), a noncollagenous bone matrix protein. Northern blot analysis confirms that OPN mRNA expression is increased by nearly 4-fold, at 6 h and 24 h after loading. The second band shares 90% homology with mouse myeloperoxidase (MPO), a bactericidal enzyme found primarily in neutrophils and monocytes. Semiquantitative PCR confirms that MPO expression is decreased 4- to 10-fold, at 1 h and 24 h after loading. Tissue distribution analysis confirmed MPO expression in bone but not in other tissues examined. In vitro analysis showed that MPO expression was not detectable in total RNA from UMR 106 osteoblastic cells or in confluent primary cultures of osteoblasts derived from either rat primary spongiosa or diaphyseal marrow. Database analysis suggests that MPO is expressed by osteocytes. These findings reinforce the association of OPN expression to bone turnover and describes for the first time, decreased expression of MPO during load-induced bone formation. These results suggest a role for both OPN and MPO expression in bone cell function. J. Cell. Biochem. 68:355-365, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 403-410 
    ISSN: 0730-2312
    Keywords: extracellular matrix ; gene therapy ; collagen ; matrix metalloproteinase ; tissue inhibitor of metalloproteinase ; transforming growth factor ; decorin ; cardiomyopathy ; hypertrophy ; ischemia ; fibrosis; functional genomics ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In chronic congestive heart failure, an illness affecting more than 4 million Americans, there is impairment of myocardial extracellular matrix (ECM) remodeling. Failing human ventricular myocardium contains activated matrix metalloproteinases (MMPs), which are involved in adverse ECM remodeling. Our studies support the concept that impaired ECM remodeling and MMP activation are, in part, responsible for the cardiac structural deformation and heart failure.There is no known program that has declared its aim the investigation of the role of ECM gene therapy in heart failure. The development of transgenic technology, and emerging techniques for in vivo gene transfer, suggest a strategy for improving cardiac function by overexpressing or downregulation of the ECM components such as MMPs, tissue inhibitor of metalloproteinases (TIMPs), transforming growth factor-β1 (TGF-β), decorin, and collagen in cardiomyopathy and heart failure. J. Cell. Biochem. 68:403-410, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 411-426 
    ISSN: 0730-2312
    Keywords: bone marrow stroma ; human ; differentiation ; TGF-β ; BMP-2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteoprogenitor cells in the human bone marrow stroma can be induced to differentiate into osteoblasts under stimulation with hormonal and local factors. We previously showed that human bone marrow stromal (HBMS) cells respond to dexamethasone and vitamin D by expressing several osteoblastic markers. In this study, we investigated the effects and interactions of local factors (BMP-2 and TGF-β2) on HBMS cell proliferation and differentiation in short-term and long-term cultures. We found that rhTGF-β2 increased DNA content and stimulated type I collagen synthesis, but inhibited ALP activity and mRNA levels, osteocalcin production, and mineralization of the matrix formed by HBMS cells. In contrast, rhBMP-2 increased ALP activity and mRNA levels, osteocalcin levels and calcium deposition in the extracellular matrix without affecting type I collagen synthesis and mRNA levels, showing that rhBMP-2 and rhTGF-β2 regulate differentially HBMS cells. Co-treatment with rhBMP-2 and rhTGF-β2 led to intermediate effects on HBMS cell proliferation and differentiation markers. rhTGF-β2 attenuated the stimulatory effect of rhBMP-2 on osteocalcin levels, and ALP activity and mRNA levels, whereas rhBMP-2 reduced the rhTGF-β2-enhanced DNA synthesis and type I collagen synthesis. We also investigated the effects of sequential treatments with rhBMP-2 and rhTGF-β2 on HBMS cell differentiation in long-term culture. A transient (9 days) treatment with rhBMP-2 abolished the rhTGF-β2 response of HBMS cells on ALP activity. In contrast, a transient (10 days) treatment with rhTGF-β2 did not influence the subsequent rhBMP-2 action on HBMS cell differentiation. The data show that TGF-β2 acts by increasing HBMS cell proliferation and type I collagen synthesis whereas BMP-2 acts by promoting HBMS cell differentiation. These observations suggest that TGF-β2 and BMP-2 may act in a sequential manner at different stages to promote human bone marrow stromal cell differentiation towards the osteoblast phenotype. J. Cell. Biochem. 68:411-426, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 446-456 
    ISSN: 0730-2312
    Keywords: IGF-I ; IGF-II ; cAMP ; PKA ; PKC ; prostaglandin ; osteoblasts ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bone cells synthesize and respond to IGF-I and IGF-II which contribute to bone remodeling and linear growth. In osteoblasts, prostaglandin (PG)E2 stimulates IGF-I but not IGF-II synthesis through a cAMP-dependent protein kinase A (PKA)-related event. However, protein kinase C (PKC) activation by PGE2 enhances replication and protein synthesis by less differentiated periosteal cells more so than in osteoblast-enriched cultures from fetal rat bone. Using various PGs and other PKA and PKC pathway activators, the importance of these aspects of PGE2 activity has now been examined on IGF receptors in these bone cell culture models. PGE2 and other agents that activate PKA enhanced 125I-IGF-II binding to type 2 IGF receptors on both cell populations. In contrast, agents that activate PKC enhanced 125I-IGF-I binding to type 1 receptors on less differentiated bone cells, and of these, only phorbol myristate acetate (PMA), which activates PKC in a receptor-independent way, was effective in osteoblast-enriched cultures. No stimulator increased total type 1 receptor protein in either cell population. Consequently, ligand binding to type 1 and type 2 IGF receptors is differentially modulated by specific intracellular pathways in bone cells. Importantly, changes in apparent type 1 receptor number occur rapidly and may do so at least in part through post-translational effects. These results may help to predict new ways to manipulate autocrine or paracrine actions by IGFs in skeletal tissue. J. Cell. Biochem. 68:446-456, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 484-499 
    ISSN: 0730-2312
    Keywords: YY1 ; zinc finger ; high-molecular-weight complex ; plasmid transfection ; nuclear matrix association ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: YY1 is a zinc finger-containing transcription factor that can both repress and activate transcription. YY1 appears to use multiple mechanisms to carry out its diverse functions. Recently, it was observed that YY1 can exist in multiple nuclear compartments. In addition to being present in the nuclear extract fraction, YY1 is also a component of the nuclear matrix. We show that YY1 can be sequestered in vivo into a high-molecular-weight complex and can be dislodged from this complex either by treatment with formamide or by incubation with an oligonucleotide containing the YY1 DNA binding site sequence. By transfecting plasmids expressing various YY1 deletion constructs and subsequent nuclear fractionation, we have identified sequences necessary for association with the nuclear matrix. These sequences (residues 256-340) co-localized with those necessary for in vivo sequestration of YY1 into the high-molecular-weight complex. We have also characterized YY1 sequences necessary for repression of activated transcription (residues 333-371) and those necessary for masking of the YY1 transactivation domain (residues 371-397). Sequences that repress activated transcription partially overlap YY1 sequences necessary for association with the nuclear matrix. However, these sequences are distinct from those that appear to mask the YY1 transactivation domain. The potential role of nuclear matrix association in controlling YY1 function is discussed. J. Cell. Biochem. 68:484-499, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 511-524 
    ISSN: 0730-2312
    Keywords: actin ; permeability ; reoxygenation ; signal transduction ; cytoskeletal rearrangement ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Hypoxia/reoxygenation injury to cultured endothelial cells results in cytoskeletal rearrangement and second messenger activation related to increased monolayer junctional permeability. Cytoskeletal rearrangement by reactive oxygen species may be related to specific activation of the phospholipase D (PLD) pathway. Human umbilical vein endothelial cell monolayers are exposed to H2O2 (100 μM) or metabolites of the PLD pathway for 1-60 min. Changes in cAMP levels, Ca2+ levels, PIP2 production, filamin distribution, and intercellular gap formation are then quantitated. H2O2-induced filamin translocation from the membrane to the cytosol occurs after 1-min H2O2 treatment, while intercellular gap formation significantly increases after 15 min. H2O2 and phosphatidic acid exposure rapidly decrease intracellular cAMP levels, while increasing PIP2 levels in a Ca2+-independent manner. H2O2-induced cAMP decreases are prevented by inhibiting phospholipase D. H2O2-induced cytoskeletal changes are prevented by inhibiting phospholipase D, phosphatidylinositol-4-phosphate kinase, phosphoinositide turnover, or by adding a synthetic peptide that binds PIP2. These data indicate that metabolites produced downstream of H2O2-induced PLD activation may mediate filamin redistribution and F-actin rearrangement. J. Cell. Biochem. 68:511-524, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 19-29 
    ISSN: 0730-2312
    Keywords: interleukin-1 ; reactive oxygen species ; nitric oxide ; c-fos ; collagenase ; chondrocytes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interleukin-1β (IL-1) is implicated in cartilage destruction in arthritis through promotion of matrix metalloproteinase production. Upregulation of collagenase gene expression by IL-1 is known to require the transactivators Fos and Jun. Recently, reactive oxygen species (ROS) have been suggested to act as intracellular signaling molecules mediating the biological effects of cytokines. Here, we demonstrated ROS production by IL-1-stimulated bovine chondrocytes and that neutralizing ROS activity by the potent antioxidant, N-acetylcysteine, or inhibiting endogenous ROS production by diphenyleneiodonium (DPI), significantly attenuated IL-1-induced c-fos and collagenase gene expression. The inhibitory effect of DPI implicates enzymes such as NADPH oxidase in the endogenous production of ROS. Chondrocytes were also found to produce nitric oxide (NO) upon IL-1 stimulation. That NO may mediate part of the inducing effects of IL-1 was supported by the observation that L-NG-monomethylarginine, a NO synthase inhibitor, partially inhibited IL-1-regulated collagenase expression. Moreover, treatment of chondrocytes with the NO-producing agent, S-nitroso-N-acetylpenicillamine, was sufficient to induce collagenase mRNA levels. In summary, our results suggest that ROS released in response to IL-1 may function as second messengers transducing extracellular stimuli to their targets in the nucleus, leading to augmentation of gene expression. J. Cell. Biochem. 69:19-29, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    ISSN: 0730-2312
    Keywords: TGF-α ; antisense oligonucleotides ; head and neck cancer ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interruption of an autocrine growth pathway involving TGF-α and EGFR may inhibit tumor growth and improve survival in head and neck cancer patients. We previously demonstrated that biopsy specimens and established cell lines from patients with squamous cell carcinoma of the head and neck (SCCHN) overexpress TGF-α and its receptor, epidermal growth factor receptor (EGFR) at both the mRNA and protein levels. Protein localization studies showed that TGF-α and EGFR are produced by the same epithelial cells in tissues from head and neck cancer patients further supporting a role for this ligand-receptor pair in an autocrine growth pathway. To confirm that TGF-α contributes to autocrine growth, we examined the effect of down regulation of TGF-α protein on SCCHN cell proliferation. Treatment of 6 SCCHN cell lines with antisense oligodeoxynucleotides targeting the translation start site of human TGF-α mRNA decreased TGF-α protein production by up to 93% and reduced cell proliferation by a mean of 76.2% compared to a 9.7% reduction with sense oligonucleotide (range P〈0R 〉 = 0.036-0.0001). TGF-α antisense oligonucleotide exposure also decreased TGF-α protein levels in normal oropharyngeal mucosal epithelial cells, however their growth rate was not affected. These findings indicate that TGF-α is participating in an autocrine signaling pathway in transformed, but not in normal mucosal epithelial cells, that promotes proliferation. J. Cell. Biochem. 69:55-62, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 81-86 
    ISSN: 0730-2312
    Keywords: cell communication ; osteoblasts ; stromal cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We characterized the formation and regulation of the gap junction in calvarial osteoblasts and in a series of subtypes from marrow stromal cells. The stromal cells included osteogenic, chondro-osteogenic, and endothelial cells. The cell coupling was measured by using fluorescence dye injected into single cells, and its migration to neighboring cells was measured. The functional coupling of cells was highly expressed by the osteoblastic cells. This process is mediated through fast changes in intracellular Ca+2 levels. Calcium ionophore (A 23187) demonstrated an uncoupling effect on the cells. In addition, the exposure of the cells to the parathyroid hormone increased the formation of the gap junction complex; the highest level was demonstrated in the osteoblastic cells. J. Cell. Biochem. 69:81-86, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 104-116 
    ISSN: 0730-2312
    Keywords: mRNA export ; cell cycle ; gene transfection ; cultured mammalian cells ; hnRNP L ; nuclear transport ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The pre-mRNA processing enhancer (PPE) element is an RNA sequence element derived from the intronless HSV-TK gene. Insertion of the element into the highly intron-dependent human β-globin gene leads to efficient expression in the absence of splicing. We have analyzed the effect of the PPE element on the expression of mouse thymidylate synthase (TS) minigenes. We have previously shown that the expression of intronless TS minigenes is moderately (up to 20-fold) stimulated by the inclusion of introns. Furthermore, S phase-specific expression of TS minigenes in growth-stimulated cells depends on the presence of a spliceable intron as well as the TS promoter. The goal of our study was to determine if the PPE element would overcome the dependence on introns for efficient expression and for S phase-specific expression of transfected TS minigenes. We found that insertion of the PPE element into an intronless TS minigene partially overcame intron dependence. However, the increase in expression was much less than that observed for the intronless β-globin gene. We also found that intronless TS or HSV-TK genes that contained the PPE element and that were driven by the TS promoter were expressed at a constant level in serum-stimulated cells. However, when an intron was included in these genes, they were expressed in an S phase-specific manner. Thus the PPE element was not able to overcome the dependence on introns for S phase-specific expression of TS minigenes. J. Cell. Biochem. 69:104-116, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    ISSN: 0730-2312
    Keywords: HB-EGF ; cleavage-secretion ; PKC ; ErbB1 ; EGF receptor ; matrix metalloproteinase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The phorbol ester, tetradecanoyl-phorbol 13-acetate (TPA), stimulates rapid proteolytic processing of the transmembrane, pro- form of heparin-binding epidermal growth factor-like growth factor (HB-EGF) at cell surfaces, suggesting the involvement of protein kinase C (PKC) isoforms in the HB-EGF secretion mechanism. To test this possibility, we expressed a chimeric protein, consisting of proHB-EGF fused to placental alkaline phosphatase (AP) near the amino terminus of processed HB-EGF, in NbMC-2 prostate epithelial cells. The proHB-EGF-AP chimera localized to plasma membranes and functioned as a diphtheria toxin receptor. Secreted HB-EGF-AP bound to heparin and exhibited potent growth factor activity. The presence of the AP moiety allowed highly quantitative measurements of cleavage-secretion responses of proHB-EGF to extracellular stimuli. As expected, rapid secretion of HB-EGF-AP was induced in a time- and dose-dependent manner by TPA. However, this was also observed with the Ca2+ionophore, ionomycin, suggesting the involvement of extracellular Ca2+ ions in the secretion mechanism. Ionomycin-induced secretion was inhibited by extracellular calcium chelation but not by the PKC inhibitors, GF109203X, staurosporine, or chelerythrine. The TPA-mediated secretion effect was inhibited by staurosporine, GF109203X, and by pretreatment with TPA, but not by calcium chelation. A small secretion response was induced by thapsigargin, which releases Ca2+ from intracellular stores, but this was completely eliminated by extracellular calcium chelation. Ionomycin- and TPA-induced HB-EGF-AP secretion was not dependent on the presence of the proHB-EGF cytoplasmic domain and was specifically inhibited by the metalloproteinase inhibitors 1,10-phenanthroline and tissue inhibitor of metalloproteinase-1 (TIMP-1). These data demonstrate that extracellular Ca2+ influx activates a membrane-associated metalloproteinase to process proHB-EGF by a pathway that does not require PKC. J. Cell. Biochem. 69:143-153, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 304-312 
    ISSN: 0730-2312
    Keywords: polysialic acid ; neural and muscle development ; tissue plasticity ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Polysialic acid (PSA) is a long polymer of negatively-charged sialic acid associated with the neural cell adhesion molecule. PSA serves as a potent negative regulator of cell interactions via its unusual biophysical properties. During development the abundant and regulated expression of this carbohydrate is closely correlated with axon pathfinding and targeting, and with certain aspects of muscle formation. Its level can also be modulated by synaptic activity. PSA expression is more restricted in the neonatal and adult brain, being primarily associated with regions capable of morphological or physiological changes. Studies on the function of PSA studies suggest that its primary role is to promote developmentally-controlled and activity-dependent plasticity in cell interactions and thereby facilitate changes in the structure and function of the nervous system. The presence of PSA on a variety of metastatic tumor lines has also attracted the attention of oncologists, and its late appearance in evolution raises interesting questions about the phylogeny of complex tissue formation. J. Cell Biochem. 70:304-312, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    ISSN: 0730-2312
    Keywords: cytochrome P450 ; estrogen metabolism ; estradiol 4-hydroxylation ; estrogen receptor ; 2,3,7,8-tetrachlorodibenzo-p- dioxin ; polymerase chain reaction ; cancer biomarkers ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Elevated expression of cytochrome P450 1B1 (CYP1B1) and estradiol 4-hydroxylation have been reported to be biomarkers of tumorigenesis in humans. The aromatic hydrocarbon receptor (AhR) regulates expression of human cytochrome P450 1A1 (CYP1A1) and CYP1B1, 17β-estradiol (E2) 2- and 4-hydroxylases, respectively. There is also evidence that expression of estrogen receptor α (ERα) potentiates CYP1A1 inducibility in breast cancer cells. To characterize these relationships further, we examined the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA), which downregulates ERα, and the high-affinity AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), on the expression of AhR, ERα, CYP1A1, and CYP1B1 in MCF-7 human breast cancer cells. Treatment with TPA, which suppressed ERα mRNA levels, caused a greater than fourfold elevation of AhR mRNA and protein levels, whereas treatment with TCDD caused a decrease in AhR protein but no change in ERα or AhR mRNA levels. In MCF-7 cells treated with TPA prior to treatment with TCDD, the AhR mRNA level was elevated, the ERα mRNA level remained suppressed, and the ratio of CYP1B1 to CYP1A1 mRNA was increased compared with treatment with TCDD alone. A corresponding increase in the ratio of the rates of 4- to 2-hydroxylation pathways of E2 metabolism was also observed in response to pretreatment with TPA prior to the addition of TCDD. These results demonstrate differential regulation of the human CYP1A1 and CYP1B1 genes and provide a cellular model to investigate further the mechanisms that may be involved in the elevated expression of CYP1B1 in tumorigenesis. J. Cell. Biochem. 70:289-296, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 297-303 
    ISSN: 0730-2312
    Keywords: magnetic fields ; heat shock ; HSP70 gene expression ; protein binding sites ; nucleotide sequences ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The mechanisms involved in sensing, signaling, and coordinating changes resulting from magnetic field-induced stress show substantial similarities to those of heat shock, e.g., magnetic field-induced heat shock 70 gene (HSP70) expression involves heat shock factor (HSF) activation and heat shock element binding. However, an additional requirement for transactivation of HSP70 expression by magnetic fields is the binding of Myc protein, indicating that additional elements and/or pathways are involved in the induction of HSP70 expression by magnetic fields. To investigate the possible participation of additional genetic elements in magnetic field-induced HSP70 expression, we examined both magnetic field exposure and heat shock on protein-DNA binding of the transcription factors HSF, AP-1, AP-2, and SP-1 in four human cell lines. The binding sites for these transcription factors are present in the HSP70 promoter. AP-1 binding activity, normally not increased by heat shock, was increased by magnetic fields; heat shock induced an increase only in HSF binding. Although intersecting and converging signaling pathways could account for the multiplicity of elements involved in magnetic field-induced HSP70 transcription, direct interaction of magnetic fields with DNA is also a possible mechanism. Because magnetic fields penetrate the cell, they could well react with conducting electrons present in the stacked bases of the DNA. J. Cell. Biochem. 70:297-303, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    ISSN: 0730-2312
    Keywords: proliferation ; cell cycle ; apoptosis ; cyclins ; p27Kip1 ; cell magnesium ; CD11b ; myeloid differentiation ; HL-60 cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: When cultured in Mg restricted medium, human leukemic HL-60 cells develop morphological and functional granulocytic differentiation. In 0.03 mM Mg, cells display the distinctive features of differentiation, without appreciable inhibition of proliferation. In 0.01 mM Mg, cells show terminal differentiation, accompanied by clear inhibition of proliferation. Such cells accumulate in the G0/G1 phase and subsequently die via apoptosis, similar to HL-60 cells that have been induced to differentiate by DMSO. These phenotypic changes are associated with a marked increase in the expression level of the cyclin dependent kinase inhibitor p27Kip1. Cyclin E expression is also slightly increased in Mg restricted cells, whereas no changes are observed in the expression level of cyclin D1. We also show that during differentiation cell total Mg decreases, whereas [Mg2+]i increases in both Mg-depleted and DMSO-treated cells. These data suggest that the maturation process is paralleled by a redistribution of intracellular Mg, leading to a shift from the bound to the free form. These changes could modulate the kinetics of Mg-dependent enzyme(s) that are involved in the control of the differentiation pathway. We propose that this model may represent an useful tool for the study of the mechanisms of cell differentiation and related events, such as aging and death. J. Cell. Biochem. 70:313-322, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 323-329 
    ISSN: 0730-2312
    Keywords: steroids ; DNA replication ; carcinogenesis ; proliferation ; cell-free system ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: There is now convincing evidence associating estrogens with an increased risk of some cancers. However, the absence of a complete correlation between estrogen receptor binding and the biological activity of these estrogens has suggested the possibility of other mechanisms of action. The effect on DNA replication of several hormones that are putatively involved in breast cancer was tested at a physiological concentration. The studies were conducted in a HeLa cell-free system by using a plasmid containing a specific mammalian origin of replication (DHFR oriβ〈0R) as template DNA. A series of related steroids produced an entire range of activity from enhancement to inhibition of in vitro DNA replication. These studies indicate a new possible target, which may help to better understand the effect of these hormones in breast cancer. Furthermore, the results show that this in vitro DNA replication system provides an evaluative assay for the effects of compounds on hormone-responsive cancers independent of some hormone receptors. J. Cell. Biochem. 70:323-329, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 338-345 
    ISSN: 0730-2312
    Keywords: sphingosine ; interleukin-6 ; osteoblast ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We previously reported that prostaglandin (PG)E1 and PGF2α induce the synthesis of interleukin-6 (IL-6) via activation of protein kinase (PK)A and PKC, respectively, in osteoblast-like MC3T3-E1 cells. In addition, we have shown that basic fibroblast growth factor (bFGF) elicits IL-6 synthesis through intracellular Ca2+ mobilization in these cells and that tumor necrosis factor-α (TNF) induces IL-6 synthesis through sphingosine 1-phosphate produced by sphingomyelin hydrolysis. In the present study, among sphingomyelin metabolites, we examined the effect of sphingosine on IL-6 synthesis induced by various agonists in MC3T3-E1 cells. Sphingosine inhibited the IL-6 synthesis induced by PGF2α or 12-O-tetradecanoylphorbol-13-acetate, an activator of PKC. Sphingosine suppressed the PGE1-induced IL-6 synthesis. The IL-6 synthesis induced by cholera toxin, forskolin, or dibutyryl cAMP was inhibited by sphingosine. Sphingosine inhibited the IL-6 synthesis induced by bFGF or A23187. However, sphingosine did not affect the IL-6 synthesis induced by interleukin-1. On the contrary, sphingosine enhanced the TNF-induced IL-6 synthesis. DL-threo-Dihydrosphingosine, an inhibitor of sphingosine kinase, reduced the enhancement by sphingosine as well as the TNF-effect. These results indicate that sphingosine modulates the IL-6 synthesis stimulated by various agonists in osteoblasts. J. Cell. Biochem. 70:338-345. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    ISSN: 0730-2312
    Keywords: cadherin ; catenins ; thyroid carcinoma cell ; epithelial cell ; cell-cell adhesion ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: E-cadherin is the major cell-cell adhesion molecule expressed by epithelial cells. Cadherins form a complex with three cytoplasmic proteins, α-, β-, and γ-catenin, and the interaction between them is crucial for anchoring the actin cytoskeleton to the intercellular adherens junctions. The invasive behavior of cancer cells has been attributed to a dysfunction of these molecules. In this study, we examined the distribution of the cadherin-catenin complex in a Chinese human thyroid cancer cell line, CGTH W-2, compared with that in normal human thyroid epithelial cells. In the normal cells, using immunofluorescence staining, E-cadherin and α-, β-, and γ-catenin were found to be localized at the intercellular junction and appeared as 135, 102, 90, and 80 kD proteins on Western blots. In CGTH W-2 cells, no E-cadherin and γ-catenin immunoreactivity was detected by immunofluorescence or Western blotting; α- and β-catenin were detected as 102 and 90 kD proteins on blots but gave a diffuse cytoplasmic immunofluorescence staining pattern in most cells, while β-catenin was also distributed throughout the cytoplasm in most cells but was found at the cell junction in some, where it colocalized with α-actinin. The present data indicate that the loss of cell adhesiveness in these cancer cells may be due to incomplete assembly of the cadherin-catenin complex at the cell junction. However, this defect did not affect the linkage of actin bundles to vinculin-enriched intercellular junctions. J. Cell. Biochem. 70:330-337, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 346-353 
    ISSN: 0730-2312
    Keywords: MHC class II ; T-helper cells ; phosphotyrosine kinase ; phospholipase C-γ1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Major histocompatibility complex (MHC) class II are expressed on most activated human lymphocytes. They direct antigen presentation events in dendritic cells and B cells (collectively called antigen presenting cells), but the role for MHC class II in human T cells is not well understood. To understand the role of surface MHC class II and to identify the molecules involved in signaling, we have defined the early activation sequence in T cells when MHC class II are engaged by a specific antibody. Specifically, we have characterized the involvement of phosphotyrosine kinases, phospholipase C (PLC), and Ca2+ mobilization. With the engagement by either whole anti-class II antibody or its Fab fragments, the enzymatic activity of p56lck and ZAP-70 increased, but there was no increase in p59fyn activity. In addition, the intracellular free Ca2+ increased, which was due to enhanced influx and not to the mobilization of intracytoplasmic Ca2+. These events did not require cross-linking because they were not significantly augmented by the addition of antispecies antibody. The coimmunoprecipitation of tyrosine phosphorylated PLC-γ1 with surface MHC class II suggested that PLC-γ1 could be recruited to MHC class II after engagement. These results show the complexities of the early signals transduced by the engagement of surface MHC class II on T cells. J. Cell. Biochem. 70:346-353, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 354-365 
    ISSN: 0730-2312
    Keywords: human fetal colon ; apolipoprotein A-I, A-IV, B-48, B-100 ; hydrocortisone ; insulin ; epidermal growth factor ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The present investigation aimed at defining the localization of apolipoproteins (apo) A-I, A-IV, B-48, and B-100 along the crypt-villus axis of the human fetal colon, their biogenesis during gestation, and their hormonal regulation. Using immunofluoresence, the distribution of apo A-I and A-IV appeared as a gradient, increasing from the developing crypt to the tip of the villus. On the other hand, apo B-100 staining was found in the crypt and the lower mid-villus region with varying intensities in the upper villus cells, while the 2D8 antibody which recognizes both apo B-100 and B-48, revealed uniform staining along the crypt-villus axis. Apolipoprotein synthesis, determined by [35S] methionine labeling, immunoprecipitation, and SDS-PAGE showed a predominance of apo A-IV (53%), followed by apo A-I (23.9%), apo B-48 (13.4%), and apo B-100 (9.7%). The synthesis of each apolipoprotein was significantly modulated by hydrocortisone, insulin and epidermal growth factor (EGF). Apart from a decrease in apo B-100 exerted by EGF and a reduction in apo A-I resulting from the addition of insulin, the other apolipoproteins were all enhanced. Our data confirm that the fetal colon has the capacity to synthesize apolipoprotein A-I, A-IV, B-48, and B-100 and establish that their synthesis are modulated by hormonal and growth factors known to be involved in the regulatory mechanism of the functional development of human jejunum. J. Cell. Biochem. 70:354-365, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 366-375 
    ISSN: 0730-2312
    Keywords: transcription ; myogenesis ; MADS domain ; DNA binding ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Previous investigations have demonstrated synergistic interactions in vivo between CCAC and A/T-rich nucleotide sequence motifs as functional components of muscle-specific transcriptional enhancers. Using CCAC and A/T-rich elements from the myoglobin and muscle creatine kinase (MCK) gene enhancers, Sp1 and myocyte-specific enhancer factor-2 (MEF-2) were identified as cognate binding proteins that recognize these sites. Physical interactions between Sp1 and MEF-2 were demonstrated by immunological detection of both proteins in DNA binding complexes formed in vitro by nuclear extracts in the presence of only the A/T sequence motif, by coprecipitation of recombinant MEF-2 in the presence of a glutathione-S-transferase-Sp1 fusion protein bound to glutathione beads, and by a two-hybrid assay in Saccharomyces cerevisiae. The interaction with Sp1 in vitro and in vivo is specific for MEF-2 and was not observed with serum response factor, a related MADS domain protein. Forced expression of Sp1 and MEF-2 in insect cells otherwise lacking these factors promotes synergistic transcriptional activation of a promoter containing binding sites for both proteins. These data expand the repertoire of functional and physical interactions between lineage-restricted (MEF-2) and ubiquitous (Sp1) transcription factors that may be important for myogenic differentiation. J. Cell. Biochem. 70:366-375, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    ISSN: 0730-2312
    Keywords: anabolic ; bone ; MMP-9 ; osteoblast ; parathyroid hormone ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Intermittent doses of parathyroid hormone (PTH) stimulate bone formation in animals and humans, but the molecular mechanisms underlying this phenomenon are not understood. Bone formation culminates with the expression of type I collagen, osteocalcin, and alkaline phosphatase, but genes that initiate and support the anabolic response are not known. To identify novel PTH-regulated genes in bone during the anabolic response, we used differential display-polymerase chain reaction (DDRT-PCR) to analyze RNA from young male rats injected with either human PTH (1-34) or vehicle control, once daily for 5 days. Total RNA was isolated from the distal femur metaphysis at 1, 6, and 48 h after the final injection and subjected to DDRT-PCR. We identified three PTH-responsive transcripts as matrix metalloproteinase-9 (MMP-9), creatine kinase, and the α1(I) polypeptide chain (COL1A1) of type I collagen. The concomitant upregulation of MMP-9 and COL1A1 during bone formation was particularly intriguing. Further characterization of MMP-9 expression revealed that it was localized to osteoblasts, osteocytes, megakaryocytes, and cells of the bone marrow in the rat distal femur metaphysis. Northern analysis for MMP-9 expression in other tissues indicated that this transcript was present in the kidney and brain. In vitro, PTH regulated the protein synthesis of MMP-9 by osteoblasts of the primary spongiosa. We propose that PTH may promote bone formation by mediating the subtle variation in MMP activities, thus preparing the extracellular matrix for the subsequent bone cell migration and deposition of new osteoid. J. Cell. Biochem. 70:391-401, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    ISSN: 0730-2312
    Keywords: osteopontin ; integrins ; mechano-transduction ; tyrosine kinase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteopontin is a predominant integrin binding protein of bone and its expression has been shown to be induced by mechanical stimuli within osteoblasts (Toma et al. [1997] J. Bone Miner. Res. 12:1626-1636). The present studies examined if the cell adhesion would mimic the mechano-transduction that stimulated opn mRNA expression and whether integrin receptors were involved in these processes. Osteopontin mRNA expression was induced three- to four-fold, 24 hours after embryonic chicken calvaria osteoblast attachment to fibronectin (FN), however no induction was observed if the cells were plated on tissue culture plastic alone. Osteopontin mRNA induction in response to cell attachment on FN was dependent on new protein synthesis and the activation of a tyrosine protein kinase(s) but unlike mechano-induction was independent of the maintenance of the cell's microfilament structure. Integrin receptor(s) were shown to be involved in mediating the signal transduction processes of both cell attachment and mechanical stimulation since incubation of osteoblasts with the integrin binding peptide RGDS partially blocked the induction of opn expression in response to both stimuli. Interestingly, incubation of the osteoblasts that were adherent on tissue culture plastic alone with the RGDS peptide lead to an induction in opn expression suggesting that integrin occupancy by itself was sufficient to initiate the signal transduction process that induced opn expression. In order to assess the role of integrin occupancy vs. focal adhesion complex formation that accompanies cell attachment, in the signal transduction process that induces opn expression, receptor clustering was stimulated pharmacologically with bombesin or lysophasphatidic acid in osteoblasts attached to tissue culture plastic. Neither compound in the absence of occupancy of the integrin receptors was capable of stimulating opn expression in attached cells, however if the cells were placed in suspension pharmacological mediation of receptor clustering and integrin occupancy were additive in their effect of inducing opn expression. These data demonstrate that induction of opn expression by mechanical stimuli and cell attachment are commonly mediated through integrin receptor(s). However, when cells are attached receptor clustering alone which accompanies focal adhesion formation was incapable of mediating signal transduction suggesting that receptor occupancy was a prerequisite to the signal transduction process that leads to the induction of opn mRNA expression. J. Cell. Biochem. 70:376-390. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    ISSN: 0730-2312
    Keywords: genome ; calmodulin ; smooth muscle ; immunohistochemistry ; heart ; development ; protein kinase ; tissue selective ; calcium ; signal transduction ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We report that the genetic locus that encodes vertebrate smooth muscle and nonmuscle myosin light chain kinase (MLCK) and kinase-related protein (KRP) has a complex arrangement and a complex pattern of expression. Three proteins are encoded by 31 exons that have only one variation, that of the first exon of KRP, and the genomic locus spans approximately 100 kb of DNA. The three proteins can differ in their relative abundance and localization among tissues and with development. MLCK is a calmodulin (CaM) regulated protein kinase that phosphorylates the light chain of myosin II. The chicken has two MLCK isoforms encoded by the MLCK/KRP locus. KRP does not bind CaM and is not a protein kinase. However, KRP binds to and regulates the structure of myosin II. Thus, KRP and MLCK have the same subcellular target, the myosin II molecular motor system. We examined the tissue and cellular localization of KRP and MLCK in the chicken embryo and in adult chicken tissues. We report on the selective localization of KRP and MLCK among and within tissues and on a differential distribution of the proteins between embryonic and adult tissues. The results fill a void in our knowledge about the organization of the MLCK/KRP genetic locus, which appears to be a late evolving regulatory paradigm, and suggest an independent and complex regulation of expression of the gene products from the MLCK/KRP genetic locus that may reflect a basic principle found in other eukaryotic gene clusters that encode functionally linked proteins. J. Cell. Biochem. 70:402-413, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    ISSN: 0730-2312
    Keywords: opioids ; cathepsin D ; pS2 ; estrogen ; cancer ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In many cancer cell lines, including breast, prostate, lung, brain, head and neck, retina, and the gastrointestinal tract, opioids decrease cell proliferation in a dose-dependent and reversible manner. Opioid and/ or other neuropeptide receptors mediate this decrease. We report that only the steroid-hormone-sensitive cell lines MCF7 and T47D respond to opioid growth inhibition in a dose-dependent manner. Therefore, an interaction of the opioid and steroid receptor system might exist, as is the case with insulin. To investigate this interaction, we have assayed two estrogen-inducible proteins (pS2 and the lysosomal enzyme cathepsin D) in MCF7 and T47D cells. When cells were grown in the presence of FBS (in which case a minimal quantity of estrogens and/ or opioids is provided by the serum), we observed either no effect of etorphine or ethylketocyclazocine (EKC) or an increase of secretion and/ or production of pS2 and cathepsin D. However, when cells were cultured in charcoal-stripped serum and in the absence of phenol red, the effect of the two opioids is different: EKC decreased the production and/ or secretion of pS2 and cathepsin D, whereas etorphine increased their synthesis and/ or secretion. The differential effect of the two general opioids was attributed to their different receptor selectivity. Furthermore, the variations of the ratio of secreted/ produced protein and the use of cycloheximide indicate that opioids selectively modify the regulatory pathway of each protein discretely. In conclusion, through the interaction with opioid and perhaps other membrane-receptor sites, opioid agonists modify in a dose-dependent manner the production and the secretion of two estrogen-regulated proteins. Opioids may therefore disturb hormonal signals mediated by the estrogen receptors. Hence, these chemicals may have potential endocrine disrupting activities. J. Cell. Biochem. 71:416-428, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 429-440 
    ISSN: 0730-2312
    Keywords: proteasome ; VDR ; SUG1 ; AF-2 domain ; 1,25-(OH)2D3 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The AF-2 helix of nuclear receptors is essential for ligand-activated transcription, and it may function to couple the receptor to transcriptional coactivator proteins. This domain also contacts components of the proteasome machinery, suggesting that nuclear receptors may be targets for proteasome-mediated proteolysis. In the present study, we demonstrate that mSUG1 (P45), a component of the 26S proteasome, interacts in a 1,25-(OH)2D3-dependent manner with the AF-2 domain of the vitamin D receptor (VDR). Furthermore, treatment of ROS 17/ 2.8 osteosarcoma cells with the proteasome inhibitors MG132 or β-lactone increased steady-state levels of the VDR protein. In the presence cycloheximide (10 μg/ ml), the liganded VDR protein was degraded with a half-life of approximately 8 h, and this rate of degradation was completely blocked by 0.05 mM MG132. The role of SUG1-VDR interaction in this process was investigated in transient expression studies. Overexpression of wild-type mSUG1 in ROS17/ 2.8 cells generated a novel proteolytic VDR fragment of approximately 50 kDa, and its production was blocked by proteasome inhibitors or by a nonhydrolyzable ATP analog. Parallel studies with SUG1(K196H), a mutant that does not interact with the VDR, did not produce the 50 kDa VDR fragment. Functionally, expression of SUG1 in a VDR-responsive reporter gene assay resulted in a profound inhibition of 1,25-(OH)2D3-activated transcription, while expression of SUG1(K196H) had no significant effect in this system. These data show that the AF-2 domain of VDR interacts with SUG1 in a 1,25-(OH)2D3-dependent fashion and that this interaction may target VDR to proteasome-mediated degradation as a means to downregulate the 1,25-(OH)2D3-activated transcriptional response. J. Cell. Biochem. 71:429-440, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    ISSN: 0730-2312
    Keywords: proliferation ; maturation ; intracellular magnesium pools ; receptor-mediated stimuli ; cyclic-AMP ; IFN-α ; cell permeabilization ; ionophore A23187 ; Na-Mg antiporter ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Magnesium homeostasis in HL-60 promyelocytic leukemia cells was compared to that in neutrophyl-like HL-60 cells obtained by 1.3% DMSO treatment. Magnesium homeostasis was studied by the characterization of magnesium efflux, the identification of intracellular magnesium pools, and the regulation of intracellular ionized Mg2+. In both undifferentiated and neutrophyl-like HL-60 cells, magnesium efflux occurred via the Na-Mg antiporter which was inhibited by imipramine and stimulated by db cAMP and forskolin. Receptor-mediated signals such as ATP, IFN-α, or PGE1, which can trigger cAMP-dependent magnesium efflux, were ineffective in undifferentiated HL-60 cells but induced 60-70% increase of magnesium efflux in neutrophyl-like HL-60 cells. Selective membrane permeabilization by the cation ionophore A23187 induced a large magnesium release when cells were treated with rotenone. In both cell populations, the addition of glucose to rotenone-treated cells restored magnesium release to the control level. Permeabilization by 0.005% digitonin provoked the release of 90% cell total magnesium in both cell types. Intracellular [Mg2+]i was 0.15 and 0.26 mM in undifferentiated and neutrophyl-like HL-60 cells, respectively. Stimuli that triggered magnesium efflux, such as db cAMP in undifferentiated and IFN-α in neutrophyl-like HL-60 cells, induced a slow but consistent increase of [Mg2+]i which was independent from Ca2+movements. Overall, these data indicate that magnesium homeostasis is regulated by receptor-mediated magnesium efflux which was modified during differentiation of HL-60 cells. Stimulation of magnesium efflux is paralleled by an increase of [Mg2+]i which reflects a release of magnesium from the bound cation pool. J. Cell. Biochem. 71:441-448, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    ISSN: 0730-2312
    Keywords: dexamethasone ; stromal cells ; IGF I ; IGF II ; IGFBPs ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Glucocorticoids inhibit the proliferation, but induce the differentiation, of bone marrow stromal cells into osteoblast-like cells. The mechanisms, however, are still conjectural. Since insulin-like growth factors (IGFs) have profound effects on osteoblast growth and differentiation, it is possible that glucocorticoids exert their effects on bone marrow stromal cells in part via regulation of IGFs. Therefore, we analyzed the effects of dexamethasone (Dex) on the expression of IGF I and IGF II in cultured preosteoblastic normal human bone marrow stromal cells (HBMSC). Whereas Dex decreased the concentration of IGF I in the conditioned medium since early in the treatment, the concentration of IGF II was increased progressively as culture period lengthened. As the activities of IGF I and IGF II are regulated by the IGF binding proteins (IGFBPs), we analyzed the effects of Dex on the expression of IGFBPs. Dex increased IGFBP-2 in a time-dependent manner. The increase in IGFBP-2, however, was only to the same extent as that of IGF II at most, depending on the length of treatment. Therefore, the increase in IGFBP-2 would dampen, but not eliminate, the increased IGF II activities. By contrast, Dex decreased IGFBP-3 levels, the latter increasing the bioavailability of IGF II. Although IGFBP-4 mRNA levels were stimulated by Dex, IGFBP-4 concentration in the conditioned medium was unchanged as measured by RIA. IGFBP-5 and IGFBP-6 mRNA levels were decreased by Dex in a time-dependent fashion. IGFBP-5 protein level was also decreased 1-4 days after Dex treatment. IGFBP-1 mRNA was not detectable in HBMSC. These accumulated data indicate that Dex regulates IGF I and IGF II and their binding proteins differentially in normal human bone marrow stromal cells. The progressive increase in IGF II may contribute to Dex-induced cell differentiation. J. Cell. Biochem. 71:449-458, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Sackett RL, McCusker RH (1998): Multivalent cations depress ligand affinity of insulin-like growth factor-binding proteins-3 and -5 on human GM-10 fibroblast cell surfaces. J Cell Biochem 69:364-375.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 461-466 
    ISSN: 0730-2312
    Keywords: TRAF2 ; tumor necrosis factor ; NF-κB ; apoptosis ; myotube ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Recent data involving traf2 knockout mice have suggested a necessity of the protein in viability of skeletal muscle tissue. traf2-/- mice are born with decreased muscle mass that is hypothesized to be due to the increased circulating tumor necrosis factor in these mice. We show that TRAF2 protein is present at high levels in terminally differentiated skeletal muscle in the developing mouse. In vitro differentiation of mouse myoblasts displays a dramatic increase in TRAF2 protein levels. Although basal NF-κB activity decreases during myogenesis, TNF-induced NF-κB activity is 10 times greater in myotubes compared with myoblasts, presumably because of the stockpiling of TRAF2 protein in these cells. This may represent a strong anti-apoptotic TRAF2-mediated response specifically tailored to myotubes. These data help explain why muscle integrity is at risk in traf2-/- mice. J. Cell. Biochem. 71:461-466, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 467-478 
    ISSN: 0730-2312
    Keywords: cell cycle ; kinase ; signal transduction ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: CDK9 has been recently shown to have increased kinase activity in differentiated cells in culture and a differentiated tissue-specific expression in the developing mouse. In order to identify factors that contribute to CDK9's differentiation-specific function, we screened a mouse embryonic library in the yeast two-hybrid system and found a tumor necrosis factor signal transducer, TRAF2, to be an interacting protein. CDK9 interacts with a conserved domain in the TRAF-C region of TRAF2, a motif that is known to bind other kinases involved in TRAF-mediated signaling. Endogenous interaction between the two proteins appears to be specific to differentiated tissue. TRAF2-mediated signaling may incorporate additional kinases to signal cell survival in myotubes, a cell type that is severely affected in TRAF2 knockout mice. J. Cell. Biochem. 71:467-478, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 479-490 
    ISSN: 0730-2312
    Keywords: macrophages ; antioxidant status ; NOD mice ; immunocytochemistry ; type 1 diabetes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: This study showed that citiolone (CIT), a free radical scavenger, significantly increased superoxide dismutase (P 〈 0.001 vs. untreated NOD, NMMA-treated, and silica-treated animals), catalase (P 〈 0.01 vs. untreated NOD), and glutathione peroxidase (P 〈 0.001 vs. untreated NOD and C57BL6/J) values. Silica treatment was capable of counteracting the plasma antioxidant capacity (TRAP) decrease observed in untreated NOD mice, although it did not block the blood glucose rise and insulitis progression in type 1 diabetes significantly. Conversely, early silica administration was able to deplete macrophages (as demonstrated by immunocytochemistry) and to block the rise in blood glucose levels and insulitis progression significantly. Silica-treated animals in this study showed the highest TRAP levels, demonstrating that depletion of macrophages also was able to improve the antioxidant status. This study suggested that macrophages are essential for type 1 diabetes development and showed that they also are involved when the antioxidant status is affected. The reported findings are significant in view of previous studies indicating that oxygen and/or nitrogen free radicals contribute to the islet β-cell destruction in type 1 diabetes animal models. J. Cell. Biochem. 71:479-490, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 491-501 
    ISSN: 0730-2312
    Keywords: diabetic microangiopathy ; endothelium ; HMEC-1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Diabetic microangiopathy has been implicated as a fundamental feature of the pathological complications of diabetes including retinopathy, neuropathy, and diabetic foot ulceration. However, previous studies devoted to examining the deleterious effects of elevated glucose on the endothelium have been performed largely in primary cultured cells of macrovessel origin. Difficulty in the harvesting and maintenance of microvascular endothelial cells in culture have hindered the study of this relevant population. Therefore, the objective of this study was to characterize the effect of elevated glucose on the proliferation and involved signaling pathways of an immortalized human dermal microvascular endothelial cell line (HMEC-1) that possess similar characteristics to their in vivo counterparts. Human dermal microvascular endothelial cells (HMEC-1) were grown in the presence of normal (5 mM) or high D-glucose (20 mM) for 14 days. The proliferative response of HMEC-1 was compared under these conditions as well as the cAMP and PKC pathways by in vitro assays. Elevated glucose significantly inhibited (P 〈 0.05) HMEC-1 proliferation after 7, 10, and 14 days. This effect was not mimicked by 20 mM mannitol. The antiproliferative effect was more pronounced with longer exposure (1-14 days) to elevated glucose and was irreversible 4 days after a 10-day exposure. The antiproliferative effect was partially reversed in the presence of a PKA inhibitor, Rp-cAMP (10-50 μM), and/or a PKC inhibitor, Calphostin C (10 nM). HMEC-1 exposed to elevated glucose (20 mM) for 14 days caused an increase in cyclic AMP accumulation, PKA, and PKC activity but was not associated with the activation of downstream events such as CRE and AP-1 binding activity. These data support the hypothesis that HMEC-1 is a suitable model to study the deleterious effects of elevated glucose on microvascular endothelial cells. Continued studies with HMEC-1 may prove advantageous in delineation of the molecular pathophysiology associated with diabetic microangiopathy. J. Cell. Biochem. 71:491-501, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    ISSN: 0730-2312
    Keywords: HMG-CoA ; MVA ; HPLC ; dolichol-like lipids ; DNA synthesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Substantial evidence has suggested that a nonsterol product of mevalonic acid (MVA) is essential for the initiation of DNA synthesis in mammalian cells. Several possible isoprenoid candidates have been suggested, but the identity of this compound still remains unknown. In this study we have isolated and purified MVA products from SV40-transformed human fibroblasts and identified fractions with a growth-stimulatory effect. The cells were labelled with [14C]MVA in the presence of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. After lipid extraction, the [14C]MVA-labelled lipids were subjected to high performance liquid chromatography and size-exclusion chromatography, and the effect of the fractionated eluate on the DNA synthesis of arrested MVA-depleted target cells was tested. Thereby we found a fraction of [14C]MVA-labelled lipids with a substantial stimulatory effect on DNA synthesis. The chromatographic behavior suggested that the growth-stimulating fractions contained dolichol-20. This was confirmed by mass spectrometric analysis. Similar results were obtained when lipids from hepatocellular carcinoma cells and a sample from breast tumor were isolated and analyzed by the same procedure. The mechanisms by which these compounds induce DNA synthesis are unknown. Recent data obtained in our laboratory have provided evidence that dolichyl groups are covalently linked to tumor cell proteins, which implicates a new biological function for long-chain polyisoprenoid alcohols (Hjertman et al. [1997] FEBS Lett 416:235-238). In this study we demonstrate that tumor cells containing dolichol-like growth-stimulatory lipids also contained dolichylated proteins. This raises the question whether the growth-stimulatory dolichol-like lipids serve as substrates for the dolichylation reaction. J. Cell. Biochem. 71:502-514, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 515-523 
    ISSN: 0730-2312
    Keywords: binding ; complex formation ; retinoic X receptor ; TFIIB ; vitamin D receptor ; VDRE ; steroid receptor ; nuclear extract ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The vitamin D receptor (VDR) elicits a transcriptional response to 1,25-dihydroxyvitamin D3 by binding to specific response elements (VDRE) in the promoter of target genes. Retinoic X receptor (RXR) is required for formation of the VDR-VDRE complex when VDR is supplied at physiologic concentrations. When porcine intestinal nuclear extract is used as a source of VDR, two distinct complexes are always observed with native gel electrophoresis. Both complexes contain VDR and RXR. We now show that the faster-migrating complex requires another heretofore unknown nuclear factor for its formation. In addition, we provide evidence that the formation of the slower-migrating complex is enhanced by transcription factor IIB (TFIIB). Using ligand binding assays, we determined that both complexes contain the same ratio of VDR to VDRE. Using RXR subtype-specific antibodies in gel shift assays, we show that the complexes contain more than one RXR subtype. Therefore, the present results demonstrate VDR-RXR-VDRE complexes formed with pig intestinal nuclear extracts contain other proteins and that the complexes formed between VDR and VDRE are not simply heterodimers of VDR and RXR. J. Cell. Biochem. 71:515-523, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 524-535 
    ISSN: 0730-2312
    Keywords: caveolae ; caveolin-1 ; tyrosine kinase ; cell transformation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Members of the nonreceptor tyrosine kinase family appear to be targeted to caveolae membrane. We have used a Rat-1 cell expressing a temperature sensitive pp60v-src kinase to assess the initial changes that take place in caveolae after kinase activation. Within 24-48 h after cells were shifted to the permissive temperature, a set of caveolae-specific proteins became phosphorylated on tyrosine. During this period there was a decline in the caveolae marker protein, caveolin-1, a loss of invaginated caveolae, and a 70% decline in the sphingomyelin content of the cell. One of the phosphorylated proteins was caveolin-1 but it was associated in coimmunoprecipitation assays with both a 30 kDa and a 27 kDa tyrosine-phosphorylated protein. Finally, the cells changed from having a typical fibroblast morphology to a rounded shape lacking polarity. In light of the recent evidence that diverse signaling events originate from caveolae, pp60v-src kinase appears to cause global changes to this membrane domain that might directly contribute to the transformed phenotype. J. Cell. Biochem. 71:524-535, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 46-54 
    ISSN: 0730-2312
    Keywords: homeobox ; breast ; ligase chain reaction ; transcription ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Homeodomain-containing proteins regulate, as transcription factors, the coordinated expression of genes involved in development, differentiation, and malignant transformation. We report here the molecular cloning of a mutated HOXB7 transcript encoding a truncated homeodomain-containing protein in MCF7 cells. This is a new example of mutation affecting the coding region of a HOX gene. In addition, we detected two HOXB7 transcripts in several breast cell lines and demonstrated that both normal and mutated alleles were expressed at the RNA level in MCF7 cells as well as in a variety of breast tissues and lymphocytes, suggesting that a truncated HOXB7 protein might be expressed in vivo. Using transient co-transfection experiments, we demonstrated that both HOXB7 proteins can activate transcription from a consensus HOX binding sequence in breast cancer cells. Our results provide evidence that HOXB7 protein has transcription factor activity in vivo and that the two last amino acids do not contribute to this property. J. Cell. Biochem. 71:46-54. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    ISSN: 0730-2312
    Keywords: osteoblast ; marrow stromal cell ; osteoblastic differentiation ; dexamethasone ; bone tissue engineering ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We investigated the effects of the time course of addition of osteogenic supplements dexamethasone, β-glycerolphosphate, and L-ascorbic acid to rat marrow stromal cells, and the exposure time on the proliferation and differentiation of the cells. It was the goal of these experiments to determine the time point for supplement addition to optimize marrow stromal cell proliferation and osteoblastic differentiation. To determine this, two studies were performed; one study was based on the age of the cells from harvest, and the other study was based on the duration of exposure to supplemented medium. Cells were seen to proliferate rapidly at early time points in the presence and absence of osteogenic supplements as determined by 3H-thymidine incorporation into the DNA of replicating cells. These results were supported by cell counts ascertained through total DNA analysis. Alkaline phosphatase (ALP) activity and osteocalcin production at 21 days were highest for both experimental designs when the cells were exposed to supplemented medium immediately upon harvest. The ALP levels at 21 days were six times greater for cells maintained in supplements throughout than for control cells cultured in the absence of supplements for both studies, reaching an absolute value of 75 × 10-7 μmole/min/cell. Osteocalcin production reached 20 × 10-6 ng/cell at 21 days in both studies for cells maintained in supplemented medium throughout the study, whereas the control cells produced an insignificant amount of osteocalcin. These results suggest that the addition of osteogenic supplements to marrow-derived cells early in the culture period did not inhibit proliferation and greatly enhanced the osteoblastic phenotype of cells in a rat model. J. Cell. Biochem. 71:55-62, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    ISSN: 0730-2312
    Keywords: prostaglandin ; phospholipase A2 ; age ; tumor necrosis factor-α ; transforming growth factor-β1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The eicosanoids, including prostaglandin E2 (PGE2) and other bioactive arachidonic acid metabolites, are important local mediators of bone remodeling. Presumably, the limited or excessive synthesis of the eicosanoids could compromise bone homeostasis. We have noted that the stimulated release of arachidonic acid by adult male donor derived human osteoblast-like (hOB) cells exceeded the stimulated release measured for female-derived hOB cells by 1.5-fold. Assays of PGE2 biosynthesis by cytokine-stimulated hOB cells also demonstrated a sex-linked difference, such that male hOB cell PGE2 production exceeded female cell production by 1.6-2.2-fold. The calcium-dependent cytoplasmic phospholipase A2 activity in subcellular fractions prepared from hOB cell homogenates was higher in both the cytosolic (1.6-fold) and particulate (1.5-fold) fractions from the male cells than in those prepared from female hOB cells, suggesting a molecular basis for the observed sexually dimorphic characteristics related to arachidonic acid metabolism by hOB cells. The relatively limited capacity of the female cells may limit needed intracellular and intercellular signaling during bone remodeling, thereby contributing to the development of bone pathology. J. Cell. Biochem. 71:74-81, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 63-73 
    ISSN: 0730-2312
    Keywords: integrin ; activation epitopes ; ligand binding ; focal adhesions ; cytoplasmic domains ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The anti-integrin β1 MAb 15/7 sometimes may be a reporter of integrin activation or ligand occupancy. However, certain β1 tail deletions eliminate ligand binding despite inducing maximal constitutive 15/7 expression [Puzon-Mclaughlin et al. (1996): J Biol Chem 271:16580-16585]. Here we describe β1 tail mutations (e.g., double point mutations [D759L/F763L, F766L/E769L], or replacement of the β1 tail by the β5 tail) that prevent rather than induce constitutive appearance of the 15/7 epitope. Despite variable losses of constitutive 15/7 epitope, these mutants all retained a similar inducible 15/7 epitope component as seen upon incubation with GRGDSP peptide ligand. In addition, constitutive 15/7 expression did not correlate with integrin localization into focal adhesions. In conclusion, we show for the first time for a fully functional integrin that specific mutations within the β1 tail can down-regulate the constitutive appearance of an extracellular conformation defined by MAb 15/7. Because this regulation occurs away from the ligand binding site and does not correlate with responsiveness to integrin ligand, cell adhesion, or localization into focal adhesions, a novel type of conformational regulation is suggested. J. Cell. Biochem. 71:63-73, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    ISSN: 0730-2312
    Keywords: fluid shear stress ; adrenomedullin ; endothelial cell ; SSRE ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Vascular endothelial cells are potent modulators of vascular tone in response to shear stress. Levels of vasoactive peptides such as adrenomedullin (AM), endothelin-1 (ET-1), C-type natriuretic peptide (CNP), and nitric oxide (NO) are affected by fluid shear stress. AM, a potent vasodilator and suppressor of smooth muscle cell proliferation, contains the shear stress responsive element (SSRE) “GAGACC” in its promoter region. To examine the role of AM in the shear stress response, cultured human aortic endothelial cells (HAoECs) were exposed to fluid shear stresses of 12 and 24 dynes/cm2 in a cone-plate shear stress loading apparatus for various time periods, and the levels of AM gene expression and peptide secretion from HAoECs were measured by Northern blotting analysis and radioimmunoassay (RIA), respectively. Both AM gene transcription and AM peptide levels were down-regulated by fluid shear stress in a time- and magnitude-dependent manner. Our results demonstrate that the normal level of arterial shear stress down-regulates AM expression in HAoECs, suggesting that AM participates in the modulation of vascular tone by fluid shear stress. J. Cell. Biochem. 71:109-115, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 96-108 
    ISSN: 0730-2312
    Keywords: androgens ; androgen receptor ; antiandrogens ; differentiation ; osteoblasts ; proliferation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: While androgens have important skeletal effects, the mechanism(s) of androgen action on bone remain unclear. Current osteoblast models to study androgen effects have several limitations, including the presence of heterogeneous cell populations. In this study, we examined the effects of androgens on the proliferation and differentiation of a novel human fetal osteoblastic cell line (hFOB/AR-6) that expresses a mature osteoblast phenotype and a physiological number (∼4,000/nucleus) of androgen receptors (AR). Treatment with 5α-dihydrotestosterone (5α-DHT) inhibited the proliferation of hFOB/AR-6 cells in a dose-dependent fashion, while it had no effect on the proliferation of hFOB cells, which express low levels of AR (〈200/nucleus). In hFOB/AR-6 cells, co-treatment with the specific AR antagonist, hydroxyflutamide abolished 5α-DHT-induced growth inhibition. Steady-state levels of transforming growth factor-β1 (TGF-β1) and TGF-β-induced early gene (TIEG) mRNA decreased after treatment of hFOB/AR-6 cells with 5α-DHT, suggesting a role for the TGF-β1-TIEG pathway in mediating 5α-DHT-induced growth inhibition of hFOB/AR-6 cells. In support of this, co-treatment of hFOB/AR-6 cells with TGF-β1 (40 pg/ml) reversed the 5α-DHT-induced growth inhibition, whereas TGF-β1 alone at this dose had no effect on hFOB/AR-6 cell proliferation. Furthermore, treatment of hFOB/AR-6 cells with 5α-DHT and testosterone (10-8 M) inhibited basal and 1,25-(OH)2D3-induced alkaline phosphatase (ALP) activity and type I collagen synthesis without affecting osteocalcin production. Thus, in this fetal osteoblast cell line expressing a physiological number of AR, androgens decrease proliferation and the expression of markers associated with osteoblast differentiation. These studies suggest that the potential anabolic effect of androgens on bone may not be mediated at the level of the mature osteoblast. J. Cell. Biochem. 71:96-108, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 82-95 
    ISSN: 0730-2312
    Keywords: M-line proteins ; titin ; expression ; antibody perturbation ; immunocytochemistry ; cardiomyocyte ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A rat polyclonal anti-M-line protein antiserum and three mouse monoclonal anti-titin antibodies (E2, F3, and A12) were used to study the spatiotemporal relationship between M-line proteins and titin during myofibril assembly in cultured chicken cardiomyocytes by immunofluorescence microscopy. In day 2 cultures, M-line proteins and titin were detected as punctate staining in most cardiomyocytes, which possessed many nonstriated fibrils. At a late stage (day 3 cultures), M-line proteins were incorporated into dot-like structures along nonstriated fibrils, while titin staining was continuous on these structures. As development progressed, M-line proteins were registered in periodic pattern in the mid-A band. In cardiomyocytes from day 5 cultures, the titin bands were separated by an unstained region, and achieved their adult doublet pattern. Thus, the organization of titin in the sarcomere appears to occur later than that of M-line proteins in the M-line. Our morphological data indicate that the early registration of M-line proteins in primitive myofibrils may guide titin filament alignment via interaction between M-line proteins and titin. In order to investigate the role of M-line proteins in the assembly of titin filaments, anti-M-line protein or anti-titin antibodies were introduced into cultured cardiomyocytes by electroporation to functionally bind the respective proteins, and the profile of myofibril assembly was examined. Cardiomyocytes from day 2-3 cultures with incorporated anti-M-line protein antibodies became shrunk, and exhibited defective myofibrillar assembly, as shown by the failure of titin to assemble into a typical sarcomeric pattern. Incorporation of anti-titin antibody E2, which recognizes the M-line end domain of titin, resulted in the failure of M-line proteins organized into the M-line structure, as shown by random, sporadic staining with anti-M-line protein antibody. These studies confirm the essential role of M-line proteins in the organization of titin filaments in the sarcomere and that the interaction between titin and M-line proteins is crucial to the formation of the M-line structure. J. Cell. Biochem. 71:82-95, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 127-139 
    ISSN: 0730-2312
    Keywords: GAPDH gene expression ; spermatogenesis ; meiotic and postmeiotic cells ; heat shock ; polyadenylation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), in addition to being a classic glycolytic enzyme, is a multifunctional protein involved in relevant cell functions such as DNA replication, DNA repair, translational control of gene expression, and apoptosis. Although the multifunctional nature of GAPDH suggests versatility in the mechanisms regulating its expression, no major qualitative changes and few quantitative changes in the GAPDH transcripts have been reported. While studying the expression of GAPDH during spermatogenesis, we detected alternative initiations to TATA box and alternative splicings in the 5′ region of the pre-mRNA, resulting in at least six different types of mRNAs. The amount and the polyadenylation of the GAPDH transcripts increased in mature testis in relation to immature testis and further increased when cell suspensions from mature testis were exposed to heat shock. These results suggest that alternative initiation, alternative splicing, and polyadenylation could provide the necessary versatility to the regulation of the expression of this multifunctional protein during spermatogenesis. J. Cell. Biochem. 71:127-139, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 50-54 
    ISSN: 0730-2312
    Keywords: p53 ; cell cycle regulation ; p21 ; wip21 ; cancer ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 43-49 
    ISSN: 0730-2312
    Keywords: tumor suppression ; p53 ; angiogenesis ; signal transduction ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Tumor suppressors act along diverse biochemical pathways to function as safeguards against cancer. This review summarizes how these pathways can be regulated, primarily by focusing on the well-characterized wild-type p53 tumor suppressor as a paradigm. Specifically, we discuss recent data linking p53 to the processes of signal transduction and angiogenesis. J. Cell. Biochem. Suppls. 30/31:43-49, 1998 © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 55-61 
    ISSN: 0730-2312
    Keywords: osteoblasts ; osteoclasts ; osteoporosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bone is subject to continuous breakdown (resorption) by osteoclasts and rebuilding (formation) by osteoblasts in order to fulfill its functions. Most bone diseases including osteoporosis are due to excessive bone resorption relative to formation. Recent research has generated new insights into the regulation of osteoclast and osteoblast differentiation and function and the interaction between the two cell types. There is increased awareness of the role of mechanical stimuli in bone homeostasis and by inference the function of bone cells. This information can lead to new therapeutic modalities for maintaining a healthy skeleton into old age. J. Cell. Biochem. Suppls. 30/31:55-61, 1998. © 1998 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 62-72 
    ISSN: 0730-2312
    Keywords: osteocalcin gene ; osteoblast growth ; osteoblast differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The bone tissue-specific osteocalcin gene remains one of a few genes that exhibits osteoblast-restricted expression. Over the last decade, characterization of the promoter regulatory elements and complexes of factors that control suppression of the osteocalcin gene in osteoprogenitor cells and transactivation in mature osteoblasts has revealed transcriptional regulatory mechanisms that mediate development of the osteoblast phenotype. In this review, we have focused on emerging concepts related to molecular mechanisms supporting osteoblast growth and differentiation based on the discoveries that the osteocalcin gene is regulated by homeodomain factors, AP-1 related proteins, and the bone restricted Cbfa1/AML3 transcription factor. J. Cell. Biochem. Suppls. 30/31:62-72, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 83-91 
    ISSN: 0730-2312
    Keywords: biomineralization ; calcification ; bone ; dentin ; matrix proteins ; matrix vesicles ; collagen ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Biomineralization is the process by which mineral crystals are deposited in an organized fashion in the matrix (either cellular or extracellular) of living organisms. Over the past 25 years, new insights into the mechanisms that control these processes have been obtained, yet questions asked then still persist, especially in terms of vertebrate mineralization. Specifically, there are still debates concerning the chemical nature of the first mineral crystals formed in bone, dentin, and cementum; the factors leading to the initial deposition of these crystals; and the functions of macromolecules found associated with these crystals. In this review, emphasis is placed on the currently accepted answers to these questions, drawing insight from nonvertebrate systems. It is suggested that there are redundant calcification mechanisms and that, by taking advantage of our current knowledge of these mechanisms, opportunities will be provided for therapeutic manipulation of diseases in which biomineralization is impaired. J. Cell. Biochem. Suppls. 30/31:83-91, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 149-157 
    ISSN: 0730-2312
    Keywords: RAP ; α2MR/LRP ; melanocytes ; melanoma ; cell culture density ; flow cytometry ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: α2-Macroglobulin receptor/low-density lipoprotein receptor-related protein is a multifunctional cell surface receptor known to bind and internalize a large number of ligands. α2-Macroglobulin receptor-associated protein acts as an intracellular “chaperone” for this receptor, and it has been shown to inhibit binding of all its known ligands. In this paper, we characterize the expression of the receptor-associated protein in both normal human epidermal melanocytes and in six different human melanoma cell lines, by the use of flow cytometry and Western blotting analysis. We show that all the melanoma cell lines and the normal melanocytes express the receptor-associated protein at similar levels, with most located intracellularly. No receptor-associated protein was detected at the cell surface in the melanocytes or in three of the cell lines. However, in two of the melanoma cell lines, large amounts of receptor-associated protein were found on the cell surface, these having the largest amounts of it reported to date; in a further melanoma cell line, there was a small amount at the cell surface. We have also shown that the melanocytes and all the melanoma cell lines express the receptor itself at a wide range of levels, the highest levels of both the cell surface receptor and the cell surface receptor-associated protein being found in one particular melanoma cell line. By growing the cell lines under controlled conditions, we have demonstrated that, although the total cellular content of the receptor is markedly increased at high cell culture density, this treatment has no effect on the level of expression of the receptor-associated protein. J. Cell. Biochem. 71:149-157, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 129-136 
    ISSN: 0730-2312
    Keywords: protein kinase CK2 ; holoenzyme ; α- and β-subunits ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Protein kinase CK2 is a ubiquitous eukaryotic ser/thr protein kinase. The active holoenzyme is a heterotetrameric protein composed of catalytic (α and α′) and regulatory (β) subunits that phosphorylates many different protein substrates and appears to be involved in the regulation of cell division. Despite important structural studies, the intimate details of the interactions of the α catalytic subunits with the β regulatory subunits are unknown. Recent evidence that indicates that both CK2 subunits can interact promiscuously with other proteins in a manner that excludes the binding of their complementary CK2 partners has opened the possibility that the phosphorylating activity of this enzyme may be regulated in a novel way. These alternative interactions could limit the in vivo availability of CK2 subunits to generate fully active holoenzyme CK2 tetramers. Likewise, variations in the ratio of α- and β-subunits could determine the activity of several phosphorylating and dephosphorylating activities. The promiscuity of the CK2 subunits can be extrapolated to a more widespread phenomenon in which “wild-card” proteins could act as general switches by interacting and regulating several catalytic activities. J. Cell. Biochem. Suppls. 30/31:129-136, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 147-157 
    ISSN: 0730-2312
    Keywords: LPA ; S1P ; G protein ; intracellular signaling pathways ; Edg receptors ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are potent phospholipid mediators with diverse biological activities. Their appearance and functional properties suggest possible roles in development, wound healing, and tissue regeneration. The growth-stimulating and other complex biological activities of LPA and S1P are attributable in part to the activation of multiple G protein-mediated intracellular signaling pathways. Several heterotrimeric G proteins, as well as Ras- and Rho-dependent pathways play central roles in the cellular responses to LPA and S1P. Recently, several G protein-coupled receptors encoded by a family of endothelial differentiation genes (edg) have been shown to bind LPA or S1P and transduce responses of cAMP, Ca2+, MAP kinases, Rho, and gene transcription. This review summarizes our current understanding of signaling pathways critical for cellular responses to LPA and S1P and of recent progress in the molecular biological analyses of the Edg receptors. J. Cell. Biochem. Suppls. 30/31:147-157, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 168-176 
    ISSN: 0730-2312
    Keywords: cadherin ; catenin ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cadherins form a family of cell-cell adhesion proteins that are critical to normal embryonic development. Expression of the various family members is regulated in a complex pattern during embryogenesis. Both reduced and inappropriate expression of cadherins have been associated with abnormal tissue formation in embryos and tumorigenesis in mature organisms. Evidence is accumulating that signals unique to individual members of the cadherin family, as well as signals common to multiple cadherins, contribute to the differentiated phenotype of various cell types. While a complete understanding of the regulation of cadherin expression of the molecular nature of intracellular signaling downstream of cadherin adhesion is essential to an understanding of embryogenesis and tumorigenesis, our knowledge in both areas is inadequate. Clearly, elucidating the factors and conditions that regulate cadherin expression and defining the signaling pathways activated by cadherins are frontiers for future research. J. Cell. Biochem. Suppls. 30/31:168-176, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 185-193 
    ISSN: 0730-2312
    Keywords: steroid receptor action ; co-repressors ; co-activators ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: During the past few years, our understanding of nuclear receptor action has dramatically improved as a result of the identification and functional analysis of co-regulators such as factors involved in chromatin remodeling, transcription intermediary factors (co-repressors and co-activators), and direct interactions with the basal transcriptional machinery. Furthermore, the elucidation of the crystal structures of the empty ligand-binding domains of the nuclear receptor and of complexes formed by the nuclear receptor's ligand-binding domain bound to agonists and antagonists has contributed significantly to our understanding of the early events of nuclear receptor action. However, the picture of hormone- and hormone receptor-mediated mechanisms of gene regulation remain incomplete and extremely complicated when one also considers the “nontraditional” interactions of hormone-activated nuclear receptors, for example, interactions between the activated steroid receptors and components of the chromatin/nuclear matrix; and finally the nongenomic effects that steroid hormones can exhibit with other signaling pathways. In this prospectus on steroid receptors, we discuss the implications of various steroid hormone and nuclear receptor interactions and potential future directions of investigation. J. Cell. Biochem. Suppls. 30/31:185-193, 1998. © 1999 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 194-202 
    ISSN: 0730-2312
    Keywords: acute leukemias ; hematopoietic cells ; histone deacetylase complexes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Accumulating evidence points to a connection between cancer and transcriptional control by histone acetylation and deacetylation. This is particularly true with regard to the acute leukemias, many of which are caused by fusion proteins that have been created by chromosomal translocations. Genetic rearrangements that disrupt the retinoic acid receptor-α and acute myeloid leukemia-1 genes create fusion proteins that block terminal differentiation of hematopoietic cells by repressing transcription. These fusion proteins interact with nuclear hormone co-repressors, which recruit histone deacetylases to promoters to repress transcription. This finding suggests that proteins within the histone deacetylase complexes may be potential targets for pharmaceutical intervention in many leukemia patients. J. Cell. Biochem. Suppls. 30/31:194-202, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 214-219 
    ISSN: 0730-2312
    Keywords: nucleus ; nuclear envelope ; nuclear export ; nuclear import ; regulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The control of transcription and translation is of fundamental importance in cell biology. In this regard, the nuclear envelope is in a unique position to contribute to the regulation of these events, by directing macromolecular exchanges between the nucleus and cytoplasm. Such exchanges occur through the nuclear pore complexes, mainly by signal-mediated processes. Different signals are required for import and export. Specific cytoplasmic or nuclear receptors initially bind the signal-containing substrate, and the complex subsequently interacts with the pores. Additional factors then assist in translocation across the envelope. Current research is focused mainly on further characterization of transport receptors, translocation factors, as well as components of the nuclear pore complex, i.e., the nucleoporins. The ultimate goal is to understand the molecular interactions that occur among the different components of the transport apparatus, the energy sources for transport, and how variations in transport capacity are generated. J. Cell. Biochem. Suppls. 30/31:214-219, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 232-237 
    ISSN: 0730-2312
    Keywords: cytoskeleton, mechanotransduction, integrins, cell architecture, tensegrity ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The field of molecular cell biology has experienced enormous advances over the last century by reducing the complexity of living cells into simpler molecular components and binding interactions that are amenable to rigorous biochemical analysis. However, as our tools become more powerful, there is a tendency to define mechanisms by what we can measure. The field is currently dominated by efforts to identify the key molecules and sequences that mediate the function of critical receptors, signal transducers, and molecular switches. Unfortunately, these conventional experimental approaches ignore the importance of supramolecular control mechanisms that play a critical role in cellular regulation. Thus, the significance of individual molecular constituents cannot be fully understood when studied in isolation because their function may vary depending on their context within the structural complexity of the living cell. These higher-order regulatory mechanisms are based on the cell's use of a form of solid-state biochemistry in which molecular components that mediate biochemical processing and signal transduction are immobilized on insoluble cytoskeletal scaffolds in the cytoplasm and nucleus. Key to the understanding of this form of cellular regulation is the realization that chemistry is structure and hence, recognition of the importance of architecture and mechanics for signal integration and biochemical control. Recent work that has unified chemical and mechanical signaling pathways provides a glimpse of how this form of higher-order cellular control may function and where paths may lie in the future. J. Cell. Biochem. Suppls. 30/31:232-237, 1998. © 1998 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 238-242 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; DNA replication sites ; transcription sites ; confocal microscopy ; nuclear domains ; higher-level nuclear organization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A new view of the cell nucleus is emerging based on the functional dynamics of nuclear architecture. The striking structural preservation of a variety of genomic processes on the nuclear matrix provides an important approach for correlating nuclear form and function. In situ labeling coupled with three-dimensional microscopy and computer imaging techniques shows that DNA replication and transcription sites are organized into higher-order units, or “zones,” in the cell nucleus. The dynamic interplay and “re-zoning” of replication and transcription regions during the cell cycle may form the structural basis for the elaborate global coordination of replicational and transcriptional programs in the mammalian cell. J. Cell. Biochem. Suppls. 30/31:238-242, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    ISSN: 0730-2312
    Keywords: glucose transporters ; sperm ; dehydroascorbic acid ; fructose ; 2-deoxy-D-glucose ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We analyzed the expression of hexose transporters in human testis and in human, rat, and bull spermatozoa and studied the uptake of hexoses and vitamin C in bull spermatozoa. Immunocytochemical and reverse transcription-polymerase chain reaction analyses demonstrated that adult human testis expressed the hexose transporters GLUT1, GLUT2, GLUT3, GLUT4, and GLUT5. Immunoblotting experiments demonstrated the presence of proteins of about 50-70 kD reactive with anti-GLUT1, GLUT2, GLUT3, and GLUT5 in membranes prepared from human spermatozoa, but no proteins reactive with GLUT4 antibodies were detected. Immunolocalization experiments confirmed the presence of GLUT1, GLUT2, GLUT3, GLUT5, and low levels of GLUT4 in human, rat, and bull spermatozoa. Each transporter isoform showed a typical subcellular localization in the head and the sperm tail. In the tail, GLUT3 and GLUT5 were present at the level of the middle piece in the three species examined, GLUT1 was present in the principal piece, and the localization of GLUT2 differed according of the species examined. Bull spermatozoa transported deoxyglucose, fructose, and the oxidized form of vitamin C, dehydroascorbic acid. Transport of deoxyglucose and dehydroascorbic acid was inhibited by cytochalasin B, indicating the direct participation of facilitative hexose transporters in the transport of both substrates by bull spermatozoa. Transport of fructose was not affected by cytochalasin B, which is consistent for an important role for GLUT5 in the transport of fructose in these cells. The data show that human, rat, and bull spermatozoa express several hexose transporter isoforms that allow for the efficient uptake of glucose, fructose, and dehydroascorbic acid by these cells. J. Cell. Biochem. 71:189-203, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    ISSN: 0730-2312
    Keywords: T-lymphocyte ; apoptosis ; signal transduction ; HgCl2 ; tyrosine phosphorylation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Exposure to Hg2+ at a wide range of concentrations (approximately 1-100 μM) more or less caused the death of murine thymic T-lymphocytes, and exposure to 1 μM but not 10 μM (or more) of Hg2+ induced DNA fragmentation. Exposure of cells to Hg2+ caused phosphorylation of multiple cellular proteins at the tyrosine residue in a concentration-dependent manner. We found that not only the DNA fragmentation induced by 1 μM Hg2+ but also the cell death bypassing DNA fragmentation caused by 10 μM or more Hg2+ was partly inhibited by protein kinase inhibitors such as staurosporine and herbimycin A. This result suggested the involvement of a protein phosphorylation-linked signal in the mechanism of the Hg2+-mediated cell death with or without DNA fragmentation. Analysis of proteins by both one- and two-dimensional electrophoresis and immunoblot showed that a 52-kDa Shc protein was heavily phosphorylated by an early signal delivered by a high concentration of Hg2+, which also phosphorylated extracellular signal-regulated kinase 1 (ERK1; p44) and ERK2 (p42) of the mitogen-activated protein kinase (MAPK) family in a concentration- and time-dependent manner. The c-Jun amino terminal kinase (p54), which is a distant relative of the MAPK family, was also phosphorylated by the treatment with Hg2+. This eventually formed the signaling cascade that ended with a nuclear target by phosphorylating c-jun at the serine 73. This phosphorylation of c-jun was inhibited by staurosporine. These results suggest that a high level of Hg2+-mediated protein phosphorylation-linked signal induces rapid cell death bypassing DNA fragmentation, whereas a lower level induces cell death accompanying DNA fragmentation. This conclusion in turn implies that DNA fragmentation is not always a prerequisite for the signal transduction-dependent cell death of T-lymphocytes. J. Cell. Biochem. 71:243-253, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 264-276 
    ISSN: 0730-2312
    Keywords: HGF/SF ; MSH ; c-met ; tyrosinase ; B16 melanoma ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Reiterated selection in vivo of B16 murine melanoma cells for enhanced liver metastatic ability yielded a cell line (B16-LS9) dramatically overexpressing a constitutively active hepatocyte growth factor/scatter factor (HGF/SF) receptor, the product of the c-met proto-oncogene. Most likely because of their overexpressing c-met, B16-LS9 cells appear to be more responsive than parental B16-F1 cells to HGF stimulation, in terms of motility, invasion, and growth. They are also more pigmented, and express higher levels of tyrosinase as compared to parental B16-F1 cells. Therefore, we set out to explore whether HGF/SF and the liver might influence the differentiation state of B16 cells. We found that HGF/SF and MSH, two factors which reportedly have a strong influence on the phenotype and the malignant behavior of melanoma cells, may act at different levels, and with opposite results, on the regulation of gene expression. In fact, while MSH induces, at the transcriptional level, an increase in the production of both c-met and tyrosinase, HGF/SF, in contrast, promotes a decrease in the expression of both c-met and tyrosinase, however at a posttranscriptional level. These two opposite effects can counter-balance each other, when the cells are treated with both factors at the same time, apparently through a mechanism involving MAP kinase activation. The effects were, however, additive when morphological changes were considered. Most intriguingly, we also describe a very strong downregulatory activity, limited to tyrosinase expression, by hepatocytes in coculture with B16 cells. This activity, also at the posttranscriptional level, is much stronger than that exerted by HGF/SF, and appears to be due to a labile soluble factor produced by the hepatocytes. J. Cell. Biochem. 71:264-276, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    ISSN: 0730-2312
    Keywords: cartilage ; aging ; osteoarthritis ; programmed cell death ; cell culture ; human ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The regulation of chondrocyte apoptosis in articular cartilage may underlay age-associated changes in cartilage and the development of osteoarthritis. Here we demonstrate the importance of Bcl-2 in regulating articular chondrocyte apoptosis in response to both serum withdrawal and retinoic acid treatment. Both stimuli induced apoptosis of primary human articular chondrocytes and a rat chondrocyte cell line as evidenced by the formation of DNA ladders. Apoptosis was accompanied by decreased expression of aggrecan, a chondrocyte specific matrix protein. The expression of Bcl-2 was downregulated by both agents based on Northern and Western analysis, while the level of Bax expression remained unchanged compared to control cells. The importance of Bcl-2 in regulating chondrocyte apoptosis was confirmed by creating cell lines overexpressing sense and antisense Bcl-2 mRNA. Multiple cell lines expressing antisense Bcl-2 displayed increased apoptosis even in the presence of 10% serum as compared to wild-type cells. In contrast, chondrocytes overexpressing Bcl-2 were resistant to apoptosis induced by both serum withdrawal and retinoic acid treatment. Finally, the expression of Bcl-2 did not block the decreased aggrecan expression in IRC cells treated with retinoic acid. We conclude that Bcl-2 plays an important role in the maintenance of articular chondrocyte survival and that retinoic acid inhibits aggrecan expression independent of the apoptotic process. J. Cell. Biochem. 71:302-309, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 313-327 
    ISSN: 0730-2312
    Keywords: articular cartilage repair ; tissue engineering ; collagen type II ; collagen type IX ; collagen network ; pyridinium crosslinks ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The function of articular cartilage as a weight-bearing tissue depends on the specific arrangement of collagen types II and IX into a three-dimensional organized collagen network that can balance the swelling pressure of the proteoglycan/ water gel. To determine whether cartilage engineered in vitro contains a functional collagen network, chondrocyte-polymer constructs were cultured for up to 6 weeks and analyzed with respect to the composition and ultrastructure of collagen by using biochemical and immunochemical methods and scanning electron microscopy. Total collagen content and the concentration of pyridinium crosslinks were significantly (57% and 70%, respectively) lower in tissue-engineered cartilage that in bovine calf articular cartilage. However, the fractions of collagen types II, IX, and X and the collagen network organization, density, and fibril diameter in engineered cartilage were not significantly different from those in natural articular cartilage. The implications of these findings for the field of tissue engineering are that differentiated chondrocytes are capable of forming a complex structure of collagen matrix in vitro, producing a tissue similar to natural articular cartilage on an ultrastructural scale. J. Cell. Biochem. 71:313-327, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 328-339 
    ISSN: 0730-2312
    Keywords: insulin ; heart ; development ; PI 3-kinase ; protein kinase B ; S6 kinase ; casein kinase 2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The control of glucose uptake and glycogen metabolism by insulin in target organs is in part mediated through the regulation of protein-serine/ threonine kinases. In this study, the expression and phosphotransferase activity levels of some of these kinases in rat heart ventricle were measured to investigate whether they might mediate the shift in the energy dependency of the developing heart from glycogen to fatty acids. Following tail-vein injection of overnight fasted adult rats with 2 U of insulin per kg body weight, protein kinase B (PKB), the 70-kDa ribosomal S6 kinase (S6K), and casein kinase 2 (CK2) were activated (30-600%), whereas the MAP/ extracellular regulated kinases (ERK)1 and ERK2 were not stimulated under these conditions. When the expression levels of the insulin-activated kinases were probed with specific antibodies in ventricular extracts from 1-, 10-, 20-, 50-, and 365-day-old rats, phosphatidylinositol 3-kinase (PI3K), PKB, S6K, and CK2 were downregulated (40-60%) with age. By contrast, ventricular glycogen synthase kinase-3β (GSK3β) protein levels were maintained during postnatal development. Similar findings were obtained when the expression of these kinases was investigated in freshly isolated ventricular myocytes, where they were detected predominantly in the cytosolic fraction of the myocytes. Compared to other adult rat tissues such as brain and liver, the levels of PI3K, PKB, S6K, and GSK3β were relatively low in the heart. Even though CK2 protein and activity levels were reduced by ∼60% in 365 day as compared to 1-day-old rats, expression of CK2 in the adult heart was as high as detected in any of the other rat tissues. The high basal activities of CK2 in early neonatal heart may be associated with the proliferating state of myocytes. J. Cell. Biochem. 71:328-339, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 103-110 
    ISSN: 0730-2312
    Keywords: secretion ; SNARE hypothesis ; priming, fusion competence ; phosphoinositides ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Maintenance of compartmental independence and diversity is part of the blueprint of the eukaryotic cell. The molecular composition of every organelle membrane is custom tailored to fulfill its unique tasks. It is retained by strict sorting and directional transport of newly synthesized cellular components by the use of specific transport vesicles. Temporally and spatially controlled membrane fission and fusion steps thus represent the basic process for delivery of both, membrane-bound and soluble components to their appropriate destination. This process is fundamental to cell growth, organelle inheritance during cell division, uptake and intracellular transport of membrane-bound and soluble molecules, and neuronal communication. The latter process has become one of the best studied examples in terms of regulatory mechanisms of membrane interactions. It has been dissected into the stages of transmitter vesicle docking, priming, and fusion: Specificity of membrane interactions depends on interactions between sets of organelle-specific membrane proteins. Priming of the secretory apparatus is an ATP-dependent process involving proteins and membrane phospholipids. Release of vesicle content is triggered by a rise in intracellular free Ca2+ levels that relieves a block previously established between the membranes poised to fuse. Neurotransmitter release is a paradigm of highly regulated intracellular membrane interaction and molecular mechanisms for this phenomenon begin to be delineated. J. Cell. Biochem. Suppls. 30/31:103-110, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 111-122 
    ISSN: 0730-2312
    Keywords: TGF-β cooperative signaling ; SMADs ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Transforming growth factor-β (TGF-β) represents an evolutionarily conserved family of secreted factors that mobilize a complex signaling network to control cell fate by regulating proliferation, differentiation, motility, adhesion, and apoptosis. TGF-β promotes the assembly of a cell surface receptor complex composed of type I (TβRI) and type II (TβRII) receptor serine/threonine kinases. In response to TGF-β binding, TβRII recruits and activates TβRI through phosphorylation of the regulatory GS-domain. Activated TβRI then initiates cytoplasmic signaling pathways to produce cellular responses. SMAD proteins together constitute a unique signaling pathway with key roles in signal transduction by TGF-β and related factors. Pathway-restricted SMADs are phosphorylated and activated by type I receptors in response to stimulation by ligand. Once activated, pathway-restricted SMADs oligomerize with the common-mediator Smad4 and subsequently translocate to the nucleus. Genetic analysis in Drosophila melanogaster and Caenorhabditis elegans, as well as TβRII and SMAD mutations in human tumors, emphasizes their importance in TGF-β signaling. Mounting evidence indicates that SMADs cooperate with ubiquitous cytoplasmic signaling cascades and nuclear factors to produce the full spectrum of TGF-β responses. Operating independently, these ubiquitous elements may influence the nature of cellular responses to TGF-β. Additionally, a variety of regulatory schemes contribute temporal and/or spatial restriction to TGF-β responses. This report reviews our current understanding of TGF-β signal transduction and considers the importance of a cooperative signaling paradigm to TGF-β-mediated biological responses. J. Cell. Biochem. Suppls. 30/31:111-122, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 137-146 
    ISSN: 0730-2312
    Keywords: G proteins ; signal transduction ; protein tyrosine kinases ; PMN ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Complex cellular responses involve the integration of heterotrimeric G protein systems with protein kinase signal transduction pathways. Key in this integration is the control of small GTP-binding proteins including Ras and Rho family members. In this paper, we discuss the control of signal transduction pathways by G proteins and their integration with specific tyrosine kinases. The integration of G proteins, kinases, and small GTP-binding proteins in controlling cellular responses is illustrated through the newly defined Gα12/13-regulated pathways. Furthermore, the polymorphonuclear leukocyte provides a primary cell system for analyzing the integration of G proteins, kinases, and small GTP-binding proteins in controlling cellular functions such as superoxide production, adherence, chemotaxis, and granule secretion. J. Cell. Biochem. Suppls. 30/31:137-146, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 158-167 
    ISSN: 0730-2312
    Keywords: peroxisomes ; lipid metabolism ; H2O2 metabolism ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Gene targeting and the elucidation of mutations underlying inherited peroxisomal diseases have provided new insights in peroxisomal lipid metabolism in vivo. The work led to the identification of a novel peroxisomal β-oxidation pathway and established clearly that genes, which are required for efficient peroxisomal oxidation of fatty acids, at the same time are key regulators of PPARα function in vivo. The new mouse models may provide helpful tools in the search for unknown natural PPARα agonists and in screening for in vivo PPARα antagonists. J. Cell Biochem. Suppls. 30/31:158-167, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 177-184 
    ISSN: 0730-2312
    Keywords: nucleosome ; chromosomes ; DNA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 203-213 
    ISSN: 0730-2312
    Keywords: histone acetylation and phosphorylation ; coactivators ; corepressors ; transcriptional activation and repression ; histone acetyltransferase ; histone deacetylase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Histone acetylation and phosphorylation destablizes nucleosome and chromatin structure. Relaxation of the chromatin fiber facilitates transcription. Coactivator complexes with histone acetyltransferase activity are recruited by transcription factors bound to enhancers or promoters. The recruited histone acetyltransferases may acetylate histone or nonhistone chromosomal proteins, resulting in the relaxation of chromatin structure. Alternatively, repressors recruit corepressor complexes with histone deacetylase activity, leading to condensation of chromatin.This review highlights the recent advances made in our understanding of the roles of histone acetyltransferases, histone deacetylases, histone kinases, and protein phosphatases in transcriptional activation and repression. Exciting reports revealing mechanistic connections between histone modifying activities and the RNA polymerase II machinery, the coupling of histone deacetylation and DNA methylation, the possible involvement of histone deacetylases in the organization of nuclear DNA, and the role of chromatin modulators in oncogenesis are discussed. J. Cell. Biochem. Suppls. 30/31:203-213, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 220-231 
    ISSN: 0730-2312
    Keywords: nuclear architecture ; gene expression ; tumor cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Functional interrelationships between components of nuclear architecture and control of gene expression are becoming increasingly evident. There is growing appreciation that multiple levels of nuclear organization integrate the regulatory cues that support activation and suppression of genes as well as the processing of gene transcripts. The linear organization of genes and promoter elements provide the potential for responsiveness to physiological regulatory signals. Parameters of chromatin structure and nucleosome organization support synergism between activities at independent regulatory sequences and render promoter elements accessible or refractory to transcription factors. Association of genes, transcription factors, and the machinery for transcript processing with the nuclear matrix facilitates fidelity of gene expression within the three-dimensional context of nuclear architecture. Mechanisms must be defined that couple nuclear morphology with enzymatic parameters of gene expression. The recent characterization of factors that mediate chromatin remodeling and intranuclear targeting signals that direct transcription factors to subnuclear domains where gene expression occurs, reflect linkage of genetic and structural components of transcriptional control. Nuclear reorganization and aberrant intranuclear trafficking of transcription factors for developmental and tissue-specific control that occurs in tumor cells and in neurological disorders provides a basis for high resolution diagnostics and targeted therapy. J. Cell. Biochem. Suppls. 30/31:220-231, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 243-249 
    ISSN: 0730-2312
    Keywords: functional organization ; nucleus ; targeting sequence ; DNA replication ; nuclear matrix ; cell cycle ; DNA methyltransferase ; DNA ligase I ; PCNA ; DNA replication factors ; GFP ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Mammalian nuclei are highly organized into functional compartments. Major nuclear processes like DNA replication and RNA processing take place in distinct foci. These microscopically visible foci are formed by the assembly of, for example, DNA replication factors and associated proteins into megadalton complexes often referred to as protein machines or factories. Thus far, two proteins, DNA ligase I and DNA methyltransferase (DNA MTase), have been analyzed in greater detail. In both cases, the assembly process appears to be controlled by distinct targeting sequences that were attached to the catalytic protein core in the course of evolution and mediate the association with replication factories in mammalian cells. The dynamics of these nuclear structures throughout the cell cycle are analyzed using green fluorescent protein (GFP). Further studies are needed to elucidate the architecture, regulation, and role of these subnuclear structures. J. Cell. Biochem. Suppls. 30/31:243-249, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 313-336 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    ISSN: 0730-2312
    Keywords: EST ; cDNA microarray ; RDA ; osteoblast differentiation ; pax-6 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Elucidation of the changes in gene expression associated with biological processes is a central problem in biology. Advances in molecular and computational biology have led to the development of powerful, high-thoughput methods for the analysis of differential gene expression. These tools have opened up new opportunities in disciplines ranging from cell and developmental biology to drug development and pharmacogenomics. In this review, the attributes of five commonly used differential gene expression methods are discussed: expressed sequence tag (EST) sequencing, cDNA microarray hybridization, subtractive cloning, differential display, and serial analysis of gene expression (SAGE). The application of EST sequencing and microarray hybridization is illustrated by the discovery of novel genes associated with osteoblast differentiation. The application of subtractive cloning is presented as a tool to identify genes regulated in vivo by the transcription factor pax-6. These and other examples illustrate the power of genomics for discovering novel genes that are important in biology and which also represent new targets for drug development. The central theme of the review is that each of the approaches to identifying differentially expressed genes is useful, and that the experimental context and subsequent evaluation of differentially expressed genes are the critical features that determine success. J. Cell. Biochem. Suppls. 30/31:286-296, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 338-340 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 213-225 
    ISSN: 0730-2312
    Keywords: glutamine ; glutamate ; mitochondria ; metabolism ; HeLa cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The oxidative metabolism of glutamine in HeLa cells was investigated using intact cells and isolated mitochondria. The concentrations of the cytoplasmic amino acids were found to be aspartate, 8.0 mM; glutamate, 22.2 mM; glutamine, 11.3 mM; glycine, 9.8 mM; taurine, 2.3 mM; and alanine, 〈1 mM. Incubation of the cells with [14C]glutamine gave steady-state recoveries of 14C-label (estimated as exogenous glutamine) in the glutamine, glutamate, and aspartate pools, of 103%, 80%, and 25%, respectively, indicating that glutamine synthetase activity was absent and that a significant proportion of glutamate oxidation proceeded through aspartate aminotransferase. No label was detected in the alanine pool, suggesting that alanine aminotransferase activity was low in these cells. The clearance rate of [14C]glutamine through the cellular compartment was 65 nmol/min per mg protein. There was a 28 s delay after [14C]glutamine was added to the cell before 14C-label was incorporated into the cytoplasm, while the formation of glutamate commenced 10 s later.Aspartate was the major metabolite formed when the mitochondria were incubated in a medium containing either glutamine, glutamate, or glutamate plus malate. The transaminase inhibitor AOA inhibited both aspartate efflux from the mitochondria and respiration. The addition of 2-oxoglutarate failed to relieve glutamate plus malate respiration, indicating that 2-oxoglutarate is part of a well-coupled truncated cycle, of which aspartate aminotransferase has been shown to be a component [Parlo and Coleman (1984): J Biol Chem 259:9997-10003]. This was confirmed by the observation that, although it inhibited respiration, AOA did not affect the efflux of citrate from the mitochondria. Thus citrate does not appear to be a cycle component and is directly transported to the medium. Therefore, it was concluded that the truncated TCA cycle in HeLa cells is the result of both a low rate of citrate synthesis and an active citrate transporter. DNP (10 μM) induced a state III-like respiration only in the presence of succinate, which supports the evidence that NAD-linked dehydrogenases were not coupled to respiration, and suggests that these mitochondria may have a defect in complex I of the electron transport chain. Arising from the present results with HeLa cells and results extant in the literature, it has been proposed that a major regulating mechanism for the flux of glutamate carbon in tumour cells is the competitive inhibition exerted by 2-oxoglutarate on aspartate and alanine aminotransferases. This has been discussed and applied to the data. J. Cell. Biochem. 68:213-225, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 247-258 
    ISSN: 0730-2312
    Keywords: SMCs ; bFGF ; collagen fibril structure ; mRNA ; atherosclerotic lesion ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Vascular smooth muscle cells (SMCs), the major cellular constituent of an artery, synthesize the bulk of fibrillar collagens, including type V/XI, which regulates heterotypic collagen fibril assembly. Basic fibroblast growth factor (bFGF) is a heparin-binding polypeptide growth factor that has been implicated in important events during the development of atherosclerosis, such as early intimal SMC proliferation. Here we have investigated the effects of bFGF on aortic SMC expression of type V/XI collagen. Treatment of exponentially growing or serum-deprived subconfluent cultures of bovine aortic SMCs with bFGF decreased the steady-state levels of the mRNAs for collagen type V/XI, including α1(V), α2(V), and α1(XI). The effect of bFGF was time dependent with a two- and a fourfold decrease in α2(V) mRNA observed after treatment for 24 and 48 h, respectively. This decrease resulted from a drop in the rate of α2(V) gene transcription; no change was observed in the stability of the α2(V) mRNA. Furthermore, accumulation of collagen protein decreased upon bFGF treatment. As expected, treatment with bFGF increased the rate of proliferation of serum-deprived SMCs, as judged by DNA content in the cultures, thymidine incorporation, and steady-state mRNA levels of the S-phase-expressed histone H3.2. These results suggest that bFGF plays an important role in the regulation of collagen fibril structure, with potential implications for the development and organization of an atherosclerotic lesion. J. Cell. Biochem. 68:247-258, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 378-388 
    ISSN: 0730-2312
    Keywords: apoptosis ; growth suppression ; retinoic acid receptors ; ovarian cancer ; AHPN ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have used conformationally restricted retinoids to investigate the role of individual RAR subtypes and RXR in mediating the growth response of ovarian tumor cells to retinoids. Our results show that treatment of all-trans-RA-sensitive CAOV-3 cells with retinoids that bind and activate a single RAR or RXR led to a partial inhibition of growth. Treatment of all-trans-RA- resistant SKOV-3 cells did not alter growth. Maximum inhibition of growth, comparable to that observed following treatment with natural retinoids such as all-trans-RA and 9-cis-RA, was obtained only following treatment with a combination of an RAR-selective compound and an RXR-selective one. These results suggest that activation of both RAR and RXR classes is required in order to obtain maximum inhibition of ovarian tumor cell growth by retinoids. In addition, one compound, AHPN, was found to inhibit both RA-sensitive CAOV-3 and RA-resistant SKOV-3 cells. Further study of the effects of this retinoid showed that AHPN acts through an apoptotic pathway. Taken together, our results suggest that retinoids may serve as effective anti-proliferative agents in the treatment of ovarian cancer. J. Cell. Biochem. 68:378-388, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    ISSN: 0730-2312
    Keywords: TGF-β ; transcription factor ; rapid regulation ; tumor suppressor ; osteoblasts ; immunohistochemistry ; breast cancer stage ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: This laboratory has previously identified a novel TGF-β inducible early gene (TIEG) in human osteoblasts [Subramaniam et al. (1995): Nucleic Acids Res 23:4907-4912]. Using TIEG specific polyclonal antibody and immunoprecipitation methods in normal human fetal osteoblast cells (hFOB cells), we have now demonstrated that TIEG encodes a 72-kDa protein whose levels are transiently increased at as early as 2 h of TGF-β treatment. Polarized confocal microscopic analysis of hFOB cells shows a nuclear localized TIEG protein in untreated cells under the conditions described under Methods. Interestingly, the levels of TIEG protein in the nuclei increase when the cells are treated with TGF-β1 for 2 h. In contrast, similar analyses of untreated human keratinocytes show a cytoplasmic localized TIEG protein that appears to be translocated to the nucleus after H2O2 treatment. Additional immunohistochemical studies have demonstrated that TIEG protein is expressed in epithelial cells of the placenta, breast, and pancreas, as well as in osteoblast cells of bone and selected other cells of the bone marrow and cerebellum with some cells showing a cytoplasmic localization and others a nuclear localization. All cells of the kidney display negative staining for this protein. Interestingly, a stage specific expression of TIEG protein is found in a dozen breast cancer biopsies, using immunohistochemistry. The cells in normal breast epithelium displays a high expression of TIEG protein, those in the in situ carcinoma display less than one-half of the levels, and those in the invasive carcinoma show a complete absence of the TIEG protein. TIEG has been localized to chromosome 8q22.2 locus, the same locus as the genes involved in osteopetrosis and acute myeloid leukemia and close to the c-myc gene locus and a locus of high polymorphism in cancer biopsies. The correlation between the levels of TIEG protein and the stage of breast cancer, its prime location in human chromosome 8q22.2, and past studies with pancreatic carcinoma, suggests that TIEG may play a role in tumor suppressor gene activities, apoptosis, or some other regulatory function of cell cycle regulation. J. Cell. Biochem. 68:226-236, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 259-268 
    ISSN: 0730-2312
    Keywords: multifunctional Ca2+/calmodulin-dependent protein kinase ; cardiac isoforms ; muscle differentiation ; cell line Hgc2 ; adult rat heart ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Despite their important role in controlling the cardiac Ca2+ homeostasis, presence and functions of individual isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in the heart are not well studied. Here we report on expression of isoforms of the δ class in two differentiation states of the embryonic rat heart-derived cell line H9c2 compared to adult rat heart. Reverse transcription coupled polymerase chain reaction analysis revealed specific expression patterns of four variants of the δ class (δB, δC, δ4, δ9) in adult rat heart, H9c2 myoblasts, and skeletal muscle-like H9c2 myotubes. δC was identified as a common isoform with higher amounts in H9c2 cells and the prominent one in myoblasts. In contrast, expression of δ9 accompanied cardiac as well as skeletal muscle differentiation. Expression of δB, however, was representative for differentiated cardiac muscle, whereas δ4 expression coincided with differentiation into the skeletal muscle-like state. Our results demonstrate differentiation-dependent isoform expression of the δ class of the multifunctional Ca2+/calmodulin-dependent protein kinase of muscle. The identification of cardiac target proteins for this kinase, e.g. the α1-subunit of the L-type Ca2+ channel, the sarcoplasmic reticulum Ca2+-ATPase, phospholamban and the ryanodine receptor define H9c2 myoblasts as a suitable model system for further functional characterization of the identified cardiac δ isoforms. J. Cell. Biochem. 68:259-268, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We are using viral oncogene probes to study the pathways by which osteoblast-specific gene expression is induced in ascorbic acid-treated MC3T3-E1 cells. The 12S product of the adenovirus E1A gene binds directly to key cellular regulators and, as a result, represses tissue specific gene expression and blocks differentiation in a wide variety of cell types. The main cellular targets of the E1A 12S product are the pRB family and p300/CBP family. The p300 family appears to be the primary target for E1A-mediated repression of tissue-specific gene expression in a variety of cell types. We have generated MC3T3-E1 cell lines that stably express either the wild-type 12S product or a mutant that targets p300/CBP, but not the pRB family. Using these constructs to dissect osteoblast differentiation, we found that targeting of p300/CBP appears to be sufficient to repress alkaline phosphatase expression, although a low but functional level of expression can be maintained if the pRB family is not targeted as well. Induction of alkaline phosphatase expression and activity can be dissociated from expression of late-stage markers such as osteocalcin and osteopontin. Surprisingly, cell lines exhibiting severe repression of alkaline phosphatase activity differentiate to a mineral-secreting phenotype much like normal MC3T3-E1 cells. Osteopontin induction is dependent on at least a minimal level of alkaline phosphatase activity, although it is not dependent on induction of alkaline phosphatase at the RNA level. If alkaline phosphatase is supplied exogenously, osteopontin expression can be induced in conditions in which endogenous alkaline phosphatase is severely repressed. J. Cell. Biochem. 68:269-280, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    ISSN: 0730-2312
    Keywords: PEPCK ; adipocytes ; transcription ; fatty acids ; fibrates ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Phosphoenolpyruvate carboxykinase (PEPCK) exerts a glyceroneogenic function in adipocytes in which transcription of its gene is increased by unsaturated fatty acids and fibrates. We used cultured rat adipose tissue fragments and 3T3-F442A adipocytes to show that the antidiabetic thiazolidinedione BRL 49653, a ligand and an activator of the γ isoform of peroxisome proliferator activated receptors (PPARγ), is a potent inducer of PEPCK mRNA. In 3T3-F442A adipocytes, the effect of BRL 49653 is rapid and concentration dependent, with a maximum reached at 1 μM and a half-maximum at 10-100 nM. PEPCK mRNA is similarly induced by the natural ligand of PPARγ, the 15-deoxy-Δ12-14 prostaglandin J2. These observations strongly suggest that PPARγ is a primary regulator of PEPCK gene expression in adipocytes. Dexamethasone at 10 nM repress induction of PEPCK mRNA by 1 μM BRL 49653, 0.32 mM oleate, or 1 mM clofibrate, in a cycloheximide-independent manner. The antiglucocorticoid RU 38486 prevents dexamethasone action, demonstrating involvement of the glucocorticoid receptor. Stable transfectants of 3T3-F442A adipocytes bearing -2100 to +69 base pairs of the PEPCK gene promoter fused to the chloramphenicol acetyltransferase (CAT) gene respond to 1 μM BRL 49653 or 1 mM clofibrate by a large increase in CAT activity, which is prevented by the simultaneous addition of 10 nM dexamethasone. Hence, in adipocytes, glucocorticoids act directly through the 5′-flanking region of the PEPCK gene to repress, in a dominant fashion, the stimulation of PEPCK gene transcription by thiazolidinediones and fibrates. J. Cell. Biochem. 68:298-308, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 339-354 
    ISSN: 0730-2312
    Keywords: glutathione ; reactive oxygen intermediates ; HIV ; signal transduction ; cytokines ; redox state ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Both clinical and experimental evidence indicates that AIDS-related Kaposi's sarcoma (AIDS-KS) has a multifactorial pathogenesis with factors such as HIV viral load, latent virus induction, and opportunistic infections contributing to disease progression. However, a consistent feature that unites these apparently diverse putative etiologic agents is sustained serum elevations of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α). While virtually every cell responds to TNF-α with gene activation, the extent of TNF-α-mediated cellular signaling is regulated by a delicate balance between signal activation and signal arresting events. Reactive oxygen intermediates (ROI), which are generated as a consequence of TNF-α membrane interaction, are part of this TNF-α-initiated cellular activation cascade. Previous studies in our laboratory have shown that AIDS-KS cells possess impaired oxygen intermediate scavenging capacities, thereby establishing conditions permissive for the intracellular retention of ROI. In this study, we used cellular capacity to upregulate the cytoprotective enzyme superoxide dismutase (SOD) to address the extent of cellular response to TNF-α. Concurrent with the SOD analyses, nucleotide profiles were obtained to assess cellular bioenergetic responses during TNF-α challenge. Proliferative growth levels of mitochondrial (Mn)SOD activities showed an activity spectrum ranging from lowest activity in AIDS-KS cells, to intermediate levels in matched, nonlesional cells from the AIDS-KS donors, to highest activities in HIV- normal fibroblasts. In contrast, following TNF-α challenge, the AIDS-KS and KS donor nonlesional cells showed a 11.89- and 5.86-fold respective increase in MnSOD activity, while the normal fibroblasts demonstrated a 1.35-fold decrease. Subsequent thiol redox modulation studies showed that only the normal fibroblast cultures showed a potentiation of TNF-α-mediated MnSOD upregulation following GSH depletion. In addition, provision of the GSH precursor, N-acetylcysteine during TNF-α challenge only diminished MnSOD activity and mitochondrial compartmentalization in the AIDS-KS cells, a finding that likely reflects the lower levels of reduced thiols in this cellular population. Our data, which show that a perturbation in their cellular thiol redox status accentuates AIDS-KS cellular responsiveness to TNF-α, suggest a biochemical rationale for the recognized TNF-α AIDS-KS clinical correlation. J. Cell. Biochem. 68:339-354, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 366-377 
    ISSN: 0730-2312
    Keywords: PC-1 ; insulin action ; insulin resistance ; insulin receptor ; tyrosine kinase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: An elevated content of membrane glycoprotein PC-1 has been observed in cells and tissues of insulin resistant patients. In addition, in vitro overexpression of PC-1 in cultured cells induces insulin resistance associated with diminished insulin receptor tyrosine kinase activity. We now find that PC-1 overexpression also influences insulin receptor signaling at a step downstream of insulin receptor tyrosine kinase, independent of insulin receptor tyrosine kinase. In the present studies, we employed Chinese hamster ovary cells that overexpress the human insulin receptor (CHO IR cells; ∼106 receptors per cell), and transfected them with human PC-1 c-DNA (CHO IR PC-1). In CHO IR PC-1 cells, insulin receptor tyrosine kinase activity was unchanged, following insulin treatment of cells. However, several biological effects of insulin, including glucose and amino acid uptake, were decreased. In CHO IR PC-1 cells, insulin stimulation of mitogen-activated protein (MAP) kinase activity was normal, suggesting that PC-1 overexpression did not affect insulin receptor activation of Ras, which is upstream of MAP kinase. Also, insulin-stimulated phosphatidylinositol (PI)-3-kinase activity was normal, suggesting that PC-1 overexpression did not interfere with the activation of this enzyme by insulin receptor substrate-1. In these cells, however, insulin stimulation of p70 ribosomal S6 kinase activity was diminished. These studies suggest, therefore, that, in addition to blocking insulin receptor tyrosine kinase activation, PC-1 can also block insulin receptor signaling at a post-receptor site. J. Cell. Biochem. 68:366-377, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 389-401 
    ISSN: 0730-2312
    Keywords: cytoskeleton ; cell motility ; intracellular dynamics ; stress fibers ; heavy chain ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Fluorescently labeled smooth muscle myosin II is often used to study myosin II dynamics in non-muscle cells. In order to provide more specific tools for tracking non-muscle myosin II in living cytoplasm, fluorescent analogues of non-muscle myosin IIA and IIB were prepared and characterized. In addition, smooth and non-muscle myosin II were labeled with both cy5 and rhodamine so that comparative, dynamic studies may be performed. Non-muscle myosin IIA was purified from bovine platelets, non-muscle myosin IIB from bovine brain, and smooth muscle myosin II from turkey gizzards. After being fluorescently labeled with tetramethylrhodamine-5-iodoacetamide or with a succinimidyl ester of cy5, they retained the following properties: (1) reversible assembly into thick filaments, (2) actin-activatable MgATPase, (3) phosphorylation by myosin light chain kinase, (4) increased MgATPase upon light-chain phosphorylation, (5) interconversion between 6S and 10S conformations, and (6) distribution into endogenous myosin II-containing structures when microinjected into cultured cells. These fluorescent analogues can be used to visualize isoform-specific dynamics of myosin II in living cells. J. Cell. Biochem. 68:389-401, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 8-21 
    ISSN: 0730-2312
    Keywords: activin A ; bone marrow stromal cells ; gene regulation ; promoter activity ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Activin A, a member of the TGF-β superfamily, plays roles in differentiation and development, including hematopoiesis. Our previous studies indicated that the expression of activin A by human bone marrow cells and monocytes is highly regulated by inflammatory cytokines and glucocorticoids. The present study was undertaken to investigate the regulation of activin A gene expression in the human bone marrow stromal cell lines L87/4 and HS-5, as well as in primary stromal cells. Northern blots demonstrated that, like primary stromal cells, the cell lines expressed four activin A RNA transcripts (6.4, 4.0, 2.8, and 1.6 kb), although distribution of the RNA among the four sizes varied. The locations of the 5′ ends of the RNAs were investigated by Northern blots and RNase protection assays. The results identified a transcription start site at 212 nucleotides upstream of the translation start codon. In addition, luciferase expression assays of a series of deletion constructs were used to identify regulatory sequences upstream of the activin A gene. A 58 bp upstream sequence exhibits promoter activity. However, severalfold higher expression requires a positive element consisting of an additional 71 bp of the upstream region. Promoter activity was also identified between 2.5 and 3.6 kb upstream of the start codon. These findings suggest that expression of activin A at the transcriptional level follows complex patterns of regulation. J. Cell. Biochem. 70:8-21, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 29-37 
    ISSN: 0730-2312
    Keywords: small GTPase ; membrane traffic ; vesicles ; transport ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Eukaryotic cells achieve complexity by compartmentalizing a subset of cellular functions into membrane-bound organelles. Maintaining this high level of cellular organization requires precise regulation of traffic between membranes. This task is accomplished, in part, by rab proteins. How these small GTPases regulate membrane traffic between cellular compartments is not clear. Here we report the characterization of a novel rab GTPase from the soil amoebae Dictyostelium discoideum. The predicted coding sequence of the new rab gene, Dictyostelium rab11b, encodes a protein of 25 kD containing all the structural hallmarks of a rab GTPase. Comparison of the sequence with the GenBank database and cladistic analysis demonstrated Dictyostelium rab11b to be a divergent member of the rab11 branch of rab proteins. Southern analysis revealed the presence of related genes in Dictyostelium. RNAse protection assays showed the Dictyostelium rab11b gene to be expressed at uniform levels throughout growth and development. Gene deletion experiments revealed that Dictyostelium rab11b was not essential for growth or development. Conceivably, the function of rab11b may be redundant with that of related genes in this organism. J. Cell. Biochem. 70:29-37, 1998. © 1998 Wiley-Liss, inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    ISSN: 0730-2312
    Keywords: coronary artery ; NO/EDRF ; adenosine ; prostacyclin ; phospholamban ; myosin light chain ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The intracellular mechanisms underlying the action of the endogenous vasodilators such as NO/EDRF, adenosine, and prostacyclin acting through cGMP and cAMP, respectively, are not well understood. One important action of cyclic nucleotides in smooth muscle relaxation is to lower the cytosolic Ca2+ concentration by enhanced sequestration into the sarcoplasmic reticulum. The present study was undertaken to elucidate the potential role of phosphorylation of phospholamban, the regulator of sarcoplasmic reticulum Ca2+ pump, for the control of coronary vascular tone by NO/EDRF, adenosine, and prostacyclin. Phospholamban was identified in pig coronary artery preparations by immunofluorescence microscopy, Western blotting and in vitro phosphorylation. Segments of pig coronary artery, with either intact or denuded endothelium, were precontracted with prostaglandin F2α (PGF2α). In endothelium-denuded preparations 3-morpholinosydnonimine (SIN-1), 5′-N-ethylcarboxiamidoadenosine (NECA), and iloprost (ILO) caused both relaxation and phospholamban phosphorylation with the potency: SIN-1 〉 NECA 〉 ILO. The regulatory myosin light chain was significantly dephosphorylated only by SIN-1. In endothelium-intact pig coronary artery, L-NAME caused additional vasoconstriction and a decrease in phospholamban phosphorylation, while phosphorylation of myosin light chain remained unchanged. An inverse relationship between phospholamban phosphorylation and vessel tone was obtained. Our findings demonstrate significant phospholamban phosphorylation during coronary artery relaxation evoked by NO, prostacyclin, and adenosine receptor activation. Because of the close correlation between phosphorylation of phospholamban and vessel relaxation, we propose that phospholamban phosphorylation is an important mechanism by which endogenous vasodilators, especially endothelial NO/EDRF, control coronary vascular smooth muscle tone. J. Cell. Biochem. 70:49-59, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 1-12 
    ISSN: 0730-2312
    Keywords: two-hybrid system ; vitamin D receptor ; retinoid X receptor ; vitamin D ; protein L7 ; basic region leucine zipper domain ; coregulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The vitamin D receptor (VDR) heterodimerizes with the retinoid X receptor (RXR) and requires additional protein-protein interactions to regulate the expression of target genes. Using the yeast two-hybrid system, we identified the previously described protein L7, that specifically interacted with the VDR in the presence of vitamin D. Deletion analysis indicated, that the N-terminus of L7, which harbours a basic region leucine zipper like domain, mediated interaction with the VDR. Binding assays with purified GST-L7 demonstrated, that L7 specifically pulled down the VDR, that was either expressed in yeast or endogenously contained in the cell line U937. Interestingly, L7 inhibited ligand-dependent VDR-RXR heterodimerization, when constitutively expressed in yeast. We also demonstrate that L7 repressed binding of VDR-RXR heterodimers to a vitamin D response element. Surprisingly, L7 recruited RXR to the same response element in the presence of 9-cis retinoic acid. Ligand-dependent protein-protein interaction in the yeast two-hybrid system confirmed, that binding of L7 also was targeted at the RXR. Our data suggest, that protein L7 is a coregulator of VDR-RXR mediated transactivation of genes, that modulates transcriptional activity by interfering with binding of the receptors to genomic enhancer elements. J. Cell. Biochem. 69:1-12, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    ISSN: 0730-2312
    Keywords: signal transduction ; chromatin structure ; cytology ; histones ; metastasis ; Ras ; MAPKK ; NIH3T3 cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: An altered nuclear morphology has been previously noted in association with Ras activation, but little is known about the structural basis, functional significance, signaling pathway, or reproducibility of any such change. We first tested the reproducibility of Ras-associated nuclear change in a series of rodent fibroblast cell lines. After independently developing criteria for recognizing Ras-associated nuclear change in a Papanicolaou stained test cell line with an inducible H(T24)-Ras oncogene, two cytopathologists blindly and independently assessed 17 other cell lines. If the cell lines showed Ras-associated nuclear change, a rank order of increasing nuclear change was independently scored. Ras-associated nuclear changes were identified in v-Fes, v-Src, v-Mos, v-Raf, and five of five H(T24)-Ras transfectants consisting of a change from a flattened, occasionally undulating nuclear shape to a more rigid spherical shape and a change from a finely textured to a coarse heterochromatic appearance. Absent or minimal changes were scored in six control cell lines. The two cytopathologists' independent morphologic rank orders were similar (P〈 .0002). The mitogen signaling pathway per se does not appear to transduce the change since no morphologic alterations were identified in cell lines with activations of downstream components of this pathway - MAPKK or c-Myc - and the rank orders did not correlate with markers of mitotic rate (P 〉 .11). The rank order correlated closely with metastatic potential (P 〈 .0014 and P 〈 .0003) but not with histone H1 composition or global nuclease sensitivity. Based on published studies of five of the cell lines, there may be a correlation between increases in certain nuclear matrix proteins and the Ras-associated nuclear change. J. Cell. Biochem. 70:130-140, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 159-171 
    ISSN: 0730-2312
    Keywords: nucleus ; nuclear domain ; genome ; nucleolus ; coiled body ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: It is becoming clear that the cell nucleus is not only organized in domains but that these domains are also organized relative to each other and to the genome. Specific nuclear domains, enriched in different proteins and RNAs, are often found next to each other and next to specific gene loci. Several lines of investigation suggest that nuclear domains are involved in facilitating or regulating gene expression. The emerging view is that the spatial relationship between different domains and genes on different chromosomes, as found in the nucleolus, is a common organizational principle in the nucleus, to allow an efficient and controlled synthesis and processing of a range of gene transcripts. J. Cell. Biochem. 70:159-171. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 181-192 
    ISSN: 0730-2312
    Keywords: coiled bodies (CBs) ; gems ; p80 coilin ; RNPs ; RNA processing ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Coiled bodies (CBs) are nuclear organelles whose morphology and composition have been conserved from plants to animals. They are highly enriched in components of three different RNA processing pathways. Small nuclear RNAs (snRNAs) involved in pre-mRNA splicing, rRNA processing, and histone mRNA 3′ end maturation all take up residence in CBs. However, CB function(s) remain obscure. This review will focus on recent developments in several aspects of CB structure and function, including exciting new results on their twin organelles, called gems. In particular, the reader will be introduced to a novel hypothesis called the “salmon theory of snRNP biogenesis.” Questions arising from and experiments necessary to test this hypothesis will be discussed. J. Cell. Biochem. 70:181-192, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 213-221 
    ISSN: 0730-2312
    Keywords: transcription ; nucleus ; cell architecture ; nuclear matrix ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: After many years of reductionistic approaches to characterize molecular mechanisms involved in transcription, the number of factors recognized to take part in this process has increased remarkably and continues to grow. When considering posttranslational modifications in conjunction with the large number of factors involved in modulating the activity of transcription complex components, the overall intricacy becomes staggering. After two decades of intensive molecular investigations, there has been a concerted effort to integrate these findings with cellular approaches to understand transcription on a more global level. This sort of reasoning actually revisits studies of approximately 20 years ago that considered the functional consequences of steroid receptor association with nuclear structure. With an abundance of new molecular probes and increasingly powerful instruments to detect them in fixed and, more recently, live cells, the issue of functional subnuclear organization is receiving increased attention. In this report, we focus on advances in characterizing the functional significance of transcription factor association with the nucleoskeleton. In particular, we consider recent biochemical and “molecular morphology” data that point to the importance of dynamic spatial and solubility partitioning of gene regulators with nuclear architecture. J. Cell. Biochem. 70:213-221, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    ISSN: 0730-2312
    Keywords: chromosome architecture ; disassembly ; reassembly ; proteases ; in vitro model ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Topoisomerase II has been suggested to play a major role in chromosome organization based on its DNA decatenating activity and its ability to mediate direct binding interactions between DNA and nuclear matrix. However, this latter point remains controversial. Here we address the question of whether the chromatin binding activity of Topoisomerase II is sufficient to modify chromosome form using whole mammalian chromosomes in vitro. Intact chromosomes were microsurgically removed from living cells and disassembled by treatment with protease or heparin. When these disassembled chromosomes were incubated with recombinant human Topoisomerase II, the enzyme became incorporated into chromatin and reassembly resulted, leading to almost complete restoration of pre-existing chromosome shape and position within minutes. Chromosome reconstituition by Topoisomerase II was dose-dependent, saturable, and appeared to be controlled stoichiometrically, rather than enzymatically. Similar reassembly was observed in the absence of ATP and when a catalytically inactive thermosensitive Topoisomerase II mutant was used at the restrictive temperature. Chromosome recondensation also could be induced after the strand-passing activity of Topoisomerase II was blocked by treatment with an inhibitor of its catalytic activity, amsacrine. When a non-hydrolyzable β,γ-imido analog of ATP (AMP-PNP) was used to physiologically fix bound Topoisomerase II enzyme in a closed form around DNA, subsequent chromosome disassembly was prevented in the presence of high salt. These data suggest that Topoisomerase II may control higher order chromatin architecture through direct binding interactions, independently of its well-known catalytic activity. J. Cell. Biochem. 69:127-142, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 169-180 
    ISSN: 0730-2312
    Keywords: growth factor ; bone ; osteoblast ; inflammation ; alkaline phosphatase ; differentiation ; proliferation ; PDGF ; mineralized nodules ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Platelet-derived growth factor (PDGF) stimulates chemotaxis and proliferation of osteoblasts, and induces bone formation in vivo. To determine how PDGF might regulate these cells, the effect of PDGF on long-term mineralizing cultures of fetal rat osteoblastic cells was examined. Although PDGF increased cell proliferation in these cultures, continuous treatment with PDGF caused a dose-dependent decrease in mineralized nodule formation. When cells were treated with multiple, brief (1 day) exposures to PDGF at the osteoblast differentiation stage, there was a significant 50% increase in mineralized nodule area. Based on modulation of alkaline phosphatase activity it appears that longer-term exposure to PDGF reduces mineralized nodule formation largely by inhibiting differentiated osteoblast function, while short-term exposure enhances proliferation without inhibiting the differentiated phenotype. Thus, the ultimate affect of PDGF on bone formation is likely to reflect two processes: a positive effect through enhancing cell number or a negative effect by inhibiting differentiated function. The inhibitory effect of PDGF on formation of a mineralized matrix is unlikely to be simply a result of enhanced proliferation of “fibroblastic” cells since cultures treated with PDGF for 3 days and then transferred to new plastic dishes exhibited a 70% increase in mineralized nodule area compared to controls. These results would predict that multiple, brief exposures to PDGF would enhance bone formation in vivo, while prolonged exposure to PDGF, which is likely to occur in chronic inflammation, would inhibit differentiated osteoblast function and limit bone regeneration. J. Cell. Biochem. 69:169-180, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 189-200 
    ISSN: 0730-2312
    Keywords: peroxisome proliferator activated receptor ; retinoid x receptor ; retinoic acid receptor ; liver hyperplasia ; hepatocarcinoma ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Chronic griseofulvin (GF) feeding induces preneoplastic foci followed by hepatocellular carcinoma in the mouse liver. Our previous study suggested that GF-induced hepatocellular proliferation had a different mechanism from that of peroxisome proliferator (PP)-induced direct hyperplasia. The GF-induced hepatocellular proliferation was mediated through activation of immediate early genes such as Fos, Jun, Myc, and NFκB. In contrast, PP-induced direct hyperplasia does not involve activation of any of these immediate early genes. It has been shown that nuclear hormone receptors including peroxisome proliferator activated receptors (PPARs) and retinoid x receptors (RXRs) play important roles in mediating the pleiotropic effects of PPs. To examine the possible roles of PPARs and RXRs during non-PP-induced hepatocellular proliferation and the interaction between PP and non-PP-induced proliferation, we have studied the expression of the PPAR and RXR genes in the GF model using northern blot hybridizations and gel retardation assays. The data showed that the expression of PPARα and RXRα genes was down-regulated in the livers containing preneoplastic nodules and in the liver tumors induced by GF. The mRNA down-regulation was accompanied by a decrease in the amount of nuclear protein-bound to peroxisome proliferator and retinoic acid responsive elements. Down-regulation was also associated with the suppressed expression of the PPARα/RXRα target genes (i.e., acyl-Co oxidase and cytochrome P450 4A1) and the catalase gene. The RXRγ gene was also down-regulated, but the RARα, β, and γ and PPARβ and γ genes were up-regulated. These results indicated that the hepatocarcinogenesis induced by GF is accompanied by suppression of the PPARα/RXRα-mediated direct hyperplasia pathway. The differential expression of these nuclear hormone receptors reveals a new aspect for understanding the individual roles and intercommunication of PPAR, RXR, and RAR isoforms in the liver. J. Cell. Biochem. 69:189-200, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...